PySpark操作Hive的常用语句函数封装包

目的:将hive常用的查看函数进行封装。

#!/usr/bin/env python
# _*_ coding:utf-8 _*_

# Standard libraries
import sys
import os
import time

# PyData stack
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
#matplotlib.use('Agg')

# Spark Libraries
from pyspark import SparkContext, SparkConf

# Spark sql Libraries
from pyspark.sql import HiveContext
from pyspark.sql import SQLContext
from pyspark.sql import Row
from pyspark.sql.functions import *
from pyspark.sql.types import *
import pyspark.sql as sprksql

# Spark ml Libraries
from pyspark.ml.classification import LogisticRegression, LogisticRegressionModel
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from pyspark.ml.feature import StringIndexer, VectorIndexer, OneHotEncoder, VectorAssembler
from pyspark.ml import Pipeline

# from utils import *
# from utils.plotting import *

# Magic!
from IPython.core.display import display, HTML, Markdown
display(HTML(""))

# 设置jupyter中显示的格式
pd.options.display.max_columns = 1000
pd.options.display.max_rows = 1000
# 等价于pd.set_option('display.max_columns', 100)

hiveContext = HiveContext(sc)

#--*--*----*--*----*--*----*--*----*--*----*--*----*--*----*--*----*--*----*--*----*--*--#

"""利用Python查看单个数据库中的所有表"""
def scanTable(db_name):
    sql = "use %s"%db_name
    hiveContext.sql(sql)
    tables = hiveContext.sql("show tables").collect()
    for i in xrange(len(tables)):
        print tables[i][0]
# scanTable("source_data")

"""查看单个表中的数据示例"""
# 参数说明:number代表查看几条数据
def scanData(db_name, table_name, number):
    sql_scan = "select * from %s.%s limit %d"%(db_name, table_name, number)
    return hiveContext.sql(sql_scan).toPandas().T
# scanData("source_data", "users_basic", 3)
# hiveContext.sql("select * from user_profile_project.user_pro_address_auto limit 2").toPandas().T


"""计算单个表中所有字段的记录数"""
def countColumnsNums(db_name,table_name):
    print u"当前数据库为%s"%db_name
    sql = "SELECT COUNT(*) FROM %s.%s" %(db_name, table_name) 
    # globals()[table_name + '_number'] = hiveContext.sql(sql)
    print u"当前表名称为%s,总记录数为:"%table_name, hiveContext.sql(sql).collect()[0][0]

    sql1 = """SHOW COLUMNS FROM %s.%s"""%(db_name, table_name)
    col_name = hiveContext.sql(sql1).collect()
    
    print u"开始计算每一列的记录数"
    for i in xrange(len(col_name)):
        sql2 = "SELECT COUNT(%s) FROM %s.%s" %(col_name[i][0], db_name, table_name)
        print col_name[i][0], hiveContext.sql(sql2).collect()[0][0], '''''''',\
        u"%s表里边一共包含%s个column,已经计算完第%s个column, 列名称为%s" %(table_name, len(col_name), i+1, col_name[i][0])
    print u"计算结束!"


"""计算所有表中的记录数"""
def hiveCountTables(db_name):
    sql = "use %s"%db_name
    hiveContext.sql(sql)
    showtables = hiveContext.sql("show tables")
    table_name = showtables.collect()
    #print u"表名称"
    #print table_name
    #print '*-' * 40 + '*'
    
    print u"开始统计"
    if type(table_name) == list:
        for i in xrange(len(table_name)):
            # sql = str("SELECT * FROM tb_source_data.%s" %table_name[i][0])
            sql = "SELECT count(*) FROM source_data.%s" %table_name[i][0]
            #print sql
            # locals()[str(table_name[i][0])] = hiveContext.sql(sql).toPandas()
            # globals()[str(table_name[i][0])] = hiveContext.sql(sql).toPandas() 
            globals()[table_name[i][0] + '_number'] = hiveContext.sql(sql)
            #print table_name[i][0]
            print table_name[i][0] + '_number',hiveContext.sql(sql).collect()[0][0]
            #print u"该database里边一共包含%s个table,正在计算第%s个table, 表名称为%s" %(len(table_name), i+1, table_name[i][0])
            #print '*-' * 40 + '*'
        print u"计算结束!"
    else:
        print "showtables is not a list"
# hiveCountTables("source_data")



"""计算所有表的总记录数和所有字段的记录数"""
def hiveCountTablesColumns(db_name):
    sql = "use %s"%db_name
    hiveContext.sql(sql)
    showtables = hiveContext.sql("show tables")
    table_name = showtables.collect()
    #print u"表名称"
    #print table_name
    #print '*-' * 40 + '*'
    
    print u"开始统计"
    if type(table_name) == list:
        for i in xrange(len(table_name)):
            sql = "SELECT COUNT(*) FROM source_data.%s" %table_name[i][0] 
            globals()[table_name[i][0] + '_number'] = hiveContext.sql(sql)
            print table_name[i][0] + '_number',hiveContext.sql(sql).collect()[0][0]
            
            sql1 = "SHOW COLUMNS FROM %s" %table_name[i][0]
            col_name = hiveContext.sql(sql1).collect()
            
            for j in xrange(len(col_name)):
                sql2 = "SELECT COUNT(%s) FROM %s" %(col_name[j][0],table_name[i][0])
                print col_name[j][0], hiveContext.sql(sql2).collect()[0][0]    
            print u"该database里边一共包含%s个table,已经计算完第%s个table, 表名称为%s" %(len(table_name), i+1, table_name[i][0])
            print '*-' * 40 + '*'
        print u"计算结束!"
    else:
        print "showtables is not a list"
        
# hiveCountTablesColumns("source_data")

你可能感兴趣的:(PySpark操作Hive的常用语句函数封装包)