SparkSQL读取/写入MySQL/Oracle数据(分区并行读取)

**

SparkSQL读取MySQL数据

**
一、sparkSQL读取MySQL数据
1、第一种方式

def main(args: Array[String]): Unit = {

    //获取sparkSession
    val sparkSession = SparkSession.builder().appName(this.getClass.getSimpleName.filter(!_.equals('$'))).getOrCreate()

    //获取sparkContext
    val sparkContext = sparkSession.sparkContext

    //设置日志级别
    sparkContext.setLogLevel("WARN")
	
	//读取数据
    val properties = new Properties()
    properties.put("user","qjjc")
    properties.put("password","XXX")
    val url = "jdbc:mysql://10.213.111.XXX:23306/buf_amr_all"
    val data: DataFrame = sparkSession.read.jdbc(url,"pdwqy_pms_yx_sbxx",properties)

	data.show()

    //释放资源
    sparkContext.stop()
    sparkSession.stop()
  }

该方法还可以并发读取数据

  1. 指定数据库字段的范围分区:

调用函数:

def jdbc(
    url: String,
    table: String,
    columnName: String,
    lowerBound: Long,
    upperBound: Long,
    numPartitions: Int,
    connectionProperties: Properties): DataFrame

代码示例:

val lowerBound = 1
val upperBound = 100000
val numPartitions = 5
 
val properties = new Properties()
properties.put("user","qjjc")
properties.put("password","XXX")
val url = "jdbc:mysql://10.213.111.XXX:23306/buf_amr_all"

val df = sqlContext.read.jdbc(url, "pdwqy_pms_yx_sbxx", "id", lowerBound, upperBound, numPartitions, prop)
  1. 根据任意字段进行分区

调用函数:

def jdbc(
    url: String,
    table: String,
    predicates: Array[String],
    connectionProperties: Properties): DataFrame

代码示例:

val predicates = Array[String]("reportDate <= '2014-12-31'", 
    								"reportDate > '2014-12-31' and reportDate <= '2015-12-31'")
 
val properties = new Properties()
properties.put("user","qjjc")
properties.put("password","XXX")
val url = "jdbc:mysql://10.213.111.XXX:23306/buf_amr_all"

val df = sqlContext.read.jdbc(url, "pdwqy_pms_yx_sbxx", predicates, prop)

注意Array中的写法格式应为SQL表达式格式,例如:

xx < xx 或者 xx=xx 或者 xx is null 

2、第二种方式

def main(args: Array[String]): Unit = {

    //创建sparkSession(打包在集群上运行要删除master)
    val sparkConf: SparkConf = new SparkConf().setAppName(this.getClass.getSimpleName.filter(!_.equals('$')))
	
	//获取sparkContext
	val sparkContext = new SparkContext(sparkConf)

    //设置日志级别
    sparkContext.setLogLevel("WARN")

	//获取sqlContext
    val spark: SQLContext = new SQLContext(sparkContext)
	
	//读取数据
	val data: DataFrame = spark.read.format("jdbc")
      .option("url", "jdbc:mysql://10.213.111.XXX:23306/buf_amr_all")
      .option("dbtable", "pdwqy_pms_yx_sbxx")
      .option("user", "qjjc")
      .option("password", "XXX")
      .load()
      
    data.show()
      
    //释放资源
    sparkContext.stop()
    sparkSession.stop()
}

二、sparkSQL将数据写入到MySQL
1、第一种方式

//计算得到DataFrame类型结果
val result: DataFrame = spark.sql("select * from table1")

//将数据保存到MySQL
val properties = new Properties()
properties.setProperty("user","root")
properties.setProperty("password","root")
result.write.mode(SaveMode.Append).jdbc("jdbc:mysql://localhost:3306/gwdsj","pdwqy_pms_yx_sbxx",properties)

2、第二种方式

//计算得到DataFrame类型结果
val result: DataFrame = spark.sql("select * from table1")

//将数据保存到MySQL
YJYP_result.write.mode(SaveMode.Append).format("jdbc")
      .option(JDBCOptions.JDBC_URL,"jdbc:mysql://21.76.120.XXX:3306/us_app?rewriteBatchedStatement=true")
      .option("user","root")
      .option("password","XXX")
      .option(JDBCOptions.JDBC_TABLE_NAME,"tb_pdwqy_ywfz_yjyp")
      .option(JDBCOptions.JDBC_TXN_ISOLATION_LEVEL,"NONE")    //不开启事务
      .option(JDBCOptions.JDBC_BATCH_INSERT_SIZE,500)   //设置批量插入
      .save()

**
此外,执行写入操作时,结果数据的字段缺失和字段顺序都不用在意,例如:

	val result = spark.sql("select TG_ID,`1` I1,`2` I2,`3` I3,DATA_DATE from result_temp")

    val properties = new Properties()
    properties.setProperty("user","root")
    properties.setProperty("password","123")
    result.write.mode(SaveMode.Append).jdbc("jdbc:mysql://localhost:3306/test11","dlzz111",properties)

数据可以顺利插入:
SparkSQL读取/写入MySQL/Oracle数据(分区并行读取)_第1张图片

SparkSQL读取Oracle数据

**
整体与MySQL类似,只需要修改URL驱动就可以:

jdbc:oracle:thin:@//10.212.242.XXX:11521/pmsgs

另外,如果是maven项目,需要注意:
由于Oracle授权问题,Maven3不提供oracle JDBC driver,我们也可以在Maven的中心搜索ojdbc驱动包,但是可以看到版本过于陈旧,即使有坐标,也下载不了。
SparkSQL读取/写入MySQL/Oracle数据(分区并行读取)_第2张图片
为了可以在使用Maven构建的项目中使用Oracle JDBC driver,我们就必须手动添加Oracle的JDBC驱动依赖到本地仓库中。

网上下载合适的Oracle依赖包(本人使用的是classes12)
在这里插入图片描述
将jar包手动添加到maven项目中,参考:
maven项目手动导入jar包依赖

你可能感兴趣的:(Spark)