Python爬虫进阶五之多线程的用法

多线程和多进程是不一样的!一个是 thread 库,一个是 multiprocessing 库。

“Python下多线程是鸡肋,推荐使用多进程!”

不建议你用这个,不过还是介绍下,如果想看可以看看下面,不想浪费时间直接看multiprocessing 多进程

鸡肋点

1、GIL是什么?

GIL的全称是Global Interpreter Lock(全局解释器锁),来源是python设计之初的考虑,为了数据安全所做的决定。

在Python多线程下,每个线程的执行方式:

  • 获取GIL
  • 执行代码直到sleep或者是python虚拟机将其挂起。
  • 释放GIL

可见,某个线程想要执行,必须先拿到GIL,我们可以把GIL看作是“通行证”,并且在一个python进程中,GIL只有一个。拿不到通行证的线程,就不允许进入CPU执行。

在Python2.x里,GIL的释放逻辑是当前线程遇见IO操作或者ticks计数达到100(ticks可以看作是Python自身的一个计数器,专门做用于GIL,每次释放后归零,这个计数可以通过 sys.setcheckinterval 来调整),进行释放。

而每次释放GIL锁,线程进行锁竞争、切换线程,会消耗资源。并且由于GIL锁存在,python里一个进程永远只能同时执行一个线程(拿到GIL的线程才能执行),这就是为什么在多核CPU上,python的多线程效率并不高。

那么是不是python的多线程就完全没用了呢?

在这里我们进行分类讨论:

1、CPU密集型代码(各种循环处理、计数等等),在这种情况下,由于计算工作多,ticks计数很快就会达到阈值,然后触发GIL的释放与再竞争(多个线程来回切换当然是需要消耗资源的),所以python下的多线程对CPU密集型代码并不友好。

2、IO密集型代码(文件处理、网络爬虫等),多线程能够有效提升效率(单线程下有IO操作会进行IO等待,造成不必要的时间浪费,而开启多线程能在线程A等待时,自动切换到线程B,可以不浪费CPU的资源,从而能提升程序执行效率)。所以python的多线程对IO密集型代码比较友好。

而在python3.x中,GIL不使用ticks计数,改为使用计时器(执行时间达到阈值后,当前线程释放GIL),这样对CPU密集型程序更加友好,但依然没有解决GIL导致的同一时间只能执行一个线程的问题,所以效率依然不尽如人意。

多核性能

多核多线程比单核多线程更差,原因是单核下多线程,每次释放GIL,唤醒的那个线程都能获取到GIL锁,所以能够无缝执行,但多核下,CPU0释放GIL后,其他CPU上的线程都会进行竞争,但GIL可能会马上又被CPU0拿到,导致其他几个CPU上被唤醒后的线程会醒着等待到切换时间后又进入待调度状态,这样会造成线程颠簸(thrashing),导致效率更低

多进程为什么不会这样?

每个进程有各自独立的GIL,互不干扰,这样就可以真正意义上的并行执行,所以在python中,多进程的执行效率优于多线程(仅仅针对多核CPU而言)。

结论:多核下,想做并行提升效率,比较通用的方法是使用多进程,能够有效提高执行效率。

所以,如果不想浪费时间,可以直接看多进程。

直接利用函数创建多线程

Python中使用线程有两种方式:函数或者用类来包装线程对象。

函数式:调用thread模块中的start_new_thread()函数来产生新线程。语法如下:

 

 

1

thread.start_new_thread ( function, args[, kwargs] )

 

参数说明:

  • function – 线程函数。
  • args – 传递给线程函数的参数,他必须是个tuple类型。
  • kwargs – 可选参数。

先用一个实例感受一下:

 

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

# -*- coding: UTF-8 -*-

 

import thread

import time

 

 

# 为线程定义一个函数

def print_time(threadName, delay):

    count = 0

    while count < 5:

        time.sleep(delay)

        count += 1

        print "%s: %s" % (threadName, time.ctime(time.time()))

 

 

# 创建两个线程

try:

    thread.start_new_thread(print_time, ("Thread-1", 2,))

    thread.start_new_thread(print_time, ("Thread-2", 4,))

except:

    print "Error: unable to start thread"

 

 

while 1:

   pass

 

print "Main Finished"

 

运行结果如下:

 

 

1

2

3

4

5

6

7

8

9

10

Thread-1: Thu Nov  3 16:43:01 2016

Thread-2: Thu Nov  3 16:43:03 2016

Thread-1: Thu Nov  3 16:43:03 2016

Thread-1: Thu Nov  3 16:43:05 2016

Thread-2: Thu Nov  3 16:43:07 2016

Thread-1: Thu Nov  3 16:43:07 2016

Thread-1: Thu Nov  3 16:43:09 2016

Thread-2: Thu Nov  3 16:43:11 2016

Thread-2: Thu Nov  3 16:43:15 2016

Thread-2: Thu Nov  3 16:43:19 2016

 

可以发现,两个线程都在执行,睡眠2秒和4秒后打印输出一段话。

注意到,在主线程写了

 

 

1

2

while 1:

   pass

 

这是让主线程一直在等待

如果去掉上面两行,那就直接输出

 

 

1

Main Finished

 

程序执行结束。

使用Threading模块创建线程

使用Threading模块创建线程,直接从threading.Thread继承,然后重写init方法和run方法:

 

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

#!/usr/bin/python

# -*- coding: UTF-8 -*-

 

import threading

import time

 

import thread

 

exitFlag = 0

 

class myThread (threading.Thread):   #继承父类threading.Thread

    def __init__(self, threadID, name, counter):

        threading.Thread.__init__(self)

        self.threadID = threadID

        self.name = name

        self.counter = counter

    def run(self):                   #把要执行的代码写到run函数里面 线程在创建后会直接运行run函数

        print "Starting " + self.name

        print_time(self.name, self.counter, 5)

        print "Exiting " + self.name

 

def print_time(threadName, delay, counter):

    while counter:

        if exitFlag:

            thread.exit()

        time.sleep(delay)

        print "%s: %s" % (threadName, time.ctime(time.time()))

        counter -= 1

 

# 创建新线程

thread1 = myThread(1, "Thread-1", 1)

thread2 = myThread(2, "Thread-2", 2)

 

# 开启线程

thread1.start()

thread2.start()

 

print "Exiting Main Thread"

 

运行结果:

 

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Starting Thread-1Starting Thread-2

Exiting Main Thread

Thread-1: Thu Nov  3 18:42:19 2016

Thread-2: Thu Nov  3 18:42:20 2016

Thread-1: Thu Nov  3 18:42:20 2016

Thread-1: Thu Nov  3 18:42:21 2016

Thread-2: Thu Nov  3 18:42:22 2016

Thread-1: Thu Nov  3 18:42:22 2016

Thread-1: Thu Nov  3 18:42:23 2016

Exiting Thread-1

Thread-2: Thu Nov  3 18:42:24 2016

Thread-2: Thu Nov  3 18:42:26 2016

Thread-2: Thu Nov  3 18:42:28 2016

Exiting Thread-2

 

有没有发现什么奇怪的地方?打印的输出格式好奇怪。比如第一行之后应该是一个回车的,结果第二个进程就打印出来了。

那是因为什么?因为这几个线程没有设置同步。

线程同步

如果多个线程共同对某个数据修改,则可能出现不可预料的结果,为了保证数据的正确性,需要对多个线程进行同步。

使用Thread对象的Lock和Rlock可以实现简单的线程同步,这两个对象都有acquire方法和release方法,对于那些需要每次只允许一个线程操作的数据,可以将其操作放到acquire和release方法之间。如下:

多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。

考虑这样一种情况:一个列表里所有元素都是0,线程”set”从后向前把所有元素改成1,而线程”print”负责从前往后读取列表并打印。

那么,可能线程”set”开始改的时候,线程”print”便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。

锁有两种状态——锁定和未锁定。每当一个线程比如”set”要访问共享数据时,必须先获得锁定;如果已经有别的线程比如”print”获得锁定了,那么就让线程”set”暂停,也就是同步阻塞;等到线程”print”访问完毕,释放锁以后,再让线程”set”继续。

经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。

看下面的例子:

 

Python

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

# -*- coding: UTF-8 -*-

 

import threading

import time

 

class myThread (threading.Thread):

    def __init__(self, threadID, name, counter):

        threading.Thread.__init__(self)

        self.threadID = threadID

        self.name = name

        self.counter = counter

    def run(self):

        print "Starting " + self.name

       # 获得锁,成功获得锁定后返回True

       # 可选的timeout参数不填时将一直阻塞直到获得锁定

       # 否则超时后将返回False

        threadLock.acquire()

        print_time(self.name, self.counter, 3)

        # 释放锁

        threadLock.release()

 

def print_time(threadName, delay, counter):

    while counter:

        time.sleep(delay)

        print "%s: %s" % (threadName, time.ctime(time.time()))

        counter -= 1

 

threadLock = threading.Lock()

threads = []

 

# 创建新线程

thread1 = myThread(1, "Thread-1", 1)

thread2 = myThread(2, "Thread-2", 2)

 

# 开启新线程

thread1.start()

thread2.start()

 

# 添加线程到线程列表

threads.append(thread1)

threads.append(thread2)

 

# 等待所有线程完成

for t in threads:

    t.join()

 

print "Exiting Main Thread"

 

在上面的代码中运用了线程锁还有join等待。

运行结果如下:

 

 

1

2

3

4

5

6

7

8

9

Starting Thread-1

Starting Thread-2

Thread-1: Thu Nov  3 18:56:49 2016

Thread-1: Thu Nov  3 18:56:50 2016

Thread-1: Thu Nov  3 18:56:51 2016

Thread-2: Thu Nov  3 18:56:53 2016

Thread-2: Thu Nov  3 18:56:55 2016

Thread-2: Thu Nov  3 18:56:57 2016

Exiting Main Thread

 

这样一来,你可以发现就不会出现刚才的输出混乱的结果了。

线程优先级队列

Python的Queue模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列PriorityQueue。这些队列都实现了锁原语,能够在多线程中直接使用。可以使用队列来实现线程间的同步。

Queue模块中的常用方法:

  • Queue.qsize() 返回队列的大小
  • Queue.empty() 如果队列为空,返回True,反之False
  • Queue.full() 如果队列满了,返回True,反之False
  • Queue.full 与 maxsize 大小对应
  • Queue.get([block[, timeout]])获取队列,timeout等待时间
  • Queue.get_nowait() 相当Queue.get(False)
  • Queue.put(item) 写入队列,timeout等待时间
  • Queue.put_nowait(item) 相当Queue.put(item, False)
  • Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号
  • Queue.join() 实际上意味着等到队列为空,再执行别的操作

用一个实例感受一下:

 

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

# -*- coding: UTF-8 -*-

 

import Queue

import threading

import time

 

exitFlag = 0

 

class myThread (threading.Thread):

    def __init__(self, threadID, name, q):

        threading.Thread.__init__(self)

        self.threadID = threadID

        self.name = name

        self.q = q

    def run(self):

        print "Starting " + self.name

        process_data(self.name, self.q)

        print "Exiting " + self.name

 

def process_data(threadName, q):

    while not exitFlag:

        queueLock.acquire()

        if not workQueue.empty():

            data = q.get()

            queueLock.release()

            print "%s processing %s" % (threadName, data)

        else:

            queueLock.release()

        time.sleep(1)

 

threadList = ["Thread-1", "Thread-2", "Thread-3"]

nameList = ["One", "Two", "Three", "Four", "Five"]

queueLock = threading.Lock()

workQueue = Queue.Queue(10)

threads = []

threadID = 1

 

# 创建新线程

for tName in threadList:

    thread = myThread(threadID, tName, workQueue)

    thread.start()

    threads.append(thread)

    threadID += 1

 

# 填充队列

queueLock.acquire()

for word in nameList:

    workQueue.put(word)

queueLock.release()

 

# 等待队列清空

while not workQueue.empty():

    pass

 

# 通知线程是时候退出

exitFlag = 1

 

# 等待所有线程完成

for t in threads:

    t.join()

print "Exiting Main Thread"

 

运行结果:

 

 

1

2

3

4

5

6

7

8

9

10

11

12

Starting Thread-1

Starting Thread-2

Starting Thread-3

Thread-3 processing One

Thread-1 processing Two

Thread-2 processing Three

Thread-3 processing Four

Thread-2 processing Five

Exiting Thread-2

Exiting Thread-3

Exiting Thread-1

Exiting Main Thread

 

上面的例子用了FIFO队列。当然你也可以换成其他类型的队列。

你可能感兴趣的:(爬虫)