- Time-LLM :超越了现有时间序列预测模型的学习器
福安德信息科技
AI预测大模型学习人工智能python大模型时序预测
AI预测相关目录AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容最好有基础的python算法预测经验EEMD策略及踩坑VMD-CNN-LSTM时序预测对双向LSTM等模型添加自注意力机制K折叠交叉验证optuna超参数优化框架多任务学习-模型融合策略Transformer模型及Paddle实现迁移学习在预测任务上的tensoflow2.0实现holt提取时序序列特征TCN时
- Python中的深度学习神经网络
2301_78297473
深度学习python神经网络
文章目录1.引言-简介-深度学习与Python的关系2.神经网络的原理-神经网络基础知识-Python中的神经网络库与工具-构建与训练神经网络模型的步骤深度学习训练过程3.卷积神经网络的原理-卷积层与池化层-特征提取与全连接层-Python中的CNN库与工具4.Python中深度学习的挑战和未来发展方向-计算资源与速度-迁移学习与模型压缩-融合多种深度学习算法1.引言-简介深度学习是机器学习的一个
- 一文读懂深度适配网络(DAN)
weixin_34088838
人工智能
这周五下午约见了机器学习和迁移学习大牛、清华大学的龙明盛老师。老师为人非常nice,思维敏捷,非常健谈!一不留神就谈了1个多小时,意犹未尽,学到了很多东西!龙明盛老师在博士期间(去年博士毕业)发表的文章几乎全部是A类顶会,他在学期间与世界知名学者杨强、PhilipS.Yu及MichaelI.Jordan多次合作,让我非常膜拜!这次介绍他在ICML-15上提出的深度适配网络。深度适配网络(DeepA
- 迁移学习之领域泛化
踩着上帝的小丑
#RL迁移学习人工智能机器学习
领域泛化领域泛化(DomainGeneralization)是机器学习和计算机视觉中的一个重要概念,它指的是模型能够从一个或多个源领域(sourcedomains)学习到的知识或模式,成功地应用到与训练时未见过的目标领域(targetdomain)上,即使这些领域之间存在分布差异。简单来说,领域泛化就是希望模型能够“举一反三”,不仅限于在特定数据集或特定环境下表现良好,而是能够跨越不同的环境或数据
- 23 注意力机制—BERT
Unknown To Known
动手学习深度学习bert人工智能深度学习
目录BERT预训练NLP里的迁移学习BERTBERT动机BERT预训练NLP里的迁移学习在计算机视觉中比较流行,将ImageNet或者更大的数据集上预训练好的模型应用到其他任务中,比如小数据的预测、图片分类或者是目标检测使用预训练好的模型(例如word2vec或语言模型)来抽取词、句子的特征做迁移学习的时候,一般不更新预训练好的模型在更换任务之后,还是需要构建新的网络来抓取新任务需要的信息使用预训
- Unet 高阶分割网络实战、多类别分割、迁移学习(deeplab、resnet101等等)
听风吹等浪起
图像分割计算机视觉人工智能
1、前言Unet图像分割之前介绍了不少,具体可以参考图像分割专栏为了实现多类别的自适应分割,前段时间利用numpy的unique函数实现了一个项目。通过numpy函数将mask的灰度值提取出来,保存在txt文本里,这样txt里面就会有类似012...等等的灰度值。而有几个灰度值,就代表分割要分出几个类别。具体可以参考:Unet实战分割项目、多尺度训练、多类别分割将vgg换成resnet的unet参
- 探索XGBoost:深度集成与迁移学习
Echo_Wish
Python笔记Python算法迁移学习机器学习人工智能
导言深度集成与迁移学习是机器学习领域中的两个重要概念,它们可以帮助提高模型的性能和泛化能力。本教程将详细介绍如何在Python中使用XGBoost进行深度集成与迁移学习,包括模型集成、迁移学习的概念和实践等,并提供相应的代码示例。模型集成模型集成是一种通过组合多个模型来提高性能的技术。XGBoost提供了集成多个弱学习器的功能,可以通过设置booster参数来选择集成模型。以下是一个简单的示例:i
- 机器学习、深度学习、强化学习、迁移学习的关联与区别
半亩花海
学习笔记机器学习深度学习迁移学习学习人工智能
Hi,大家好,我是半亩花海。本文主要了解并初步探究机器学习、深度学习、强化学习、迁移学习的关系与区别,通过清晰直观的关系图展现出四种“学习”之间的关系。虽然这四种“学习”方法在理论和应用上存在着一定的区别,但它们之间也存在交叉和重叠,有时候也会结合使用来解决实际问题。一、四种“学习”1.机器学习机器学习是人工智能的一个子领域,研究如何让计算机系统利用数据和经验,来不断改善和优化自身的性能。其核心思
- 预训练和微调在迁移学习中的作用
一条小小yu
迁移学习人工智能机器学习
在机器学习和深度学习中,"pre-training"(预训练)和"fine-tuning"(微调)是两个常见且重要的概念,它们通常在迁移学习场景中使用,以提高模型在特定任务上的性能。预训练(Pre-training)预训练是指在一个大型且通常与目标任务相关但不完全相同的数据集上训练模型的过程。这个阶段的目的是让模型学习到一些通用的特征或知识,这些特征或知识可以帮助模型在后续的特定任务上表现更好。预
- Python环境下基于深度判别迁移学习网络的轴承故障诊断
哥廷根数学学派
故障诊断信号处理深度学习python迁移学习开发语言
目前很多机器学习和数据挖掘算法都是基于训练数据和测试数据位于同一特征空间、拥有相同数据分布的假设。然而在现实应用中,该假设却未必存在。一方面,如果将利用某一领域数据训练得到的模型直接应用于新的目标领域,领域之间切实存在的数据差异可能会导致模型效果的骤然下降。另一方面,如果直接在新的目标领域中进行模型的训练,其数据的稀缺和标注的不完整可能会导致监督学习出现严重的过拟合问题,难以达到令人满意的学习效果
- 【深度学习:迁移学习】图像识别预训练模型的迁移学习
jcfszxc
深度学习知识专栏深度学习迁移学习人工智能
【深度学习:迁移学习】图像识别预训练模型的迁移学习什么是迁移学习?为什么不从头开始训练模型?迁移学习的优点是:如何使用预训练模型进行迁移学习:迁移学习的过程:实施迁移学习来构建人脸识别模型:模型的构建分为3个步骤:1.导入预训练模型并添加密集层。2.将训练数据加载到图像数据生成器中。3.通过预测验证数据标签加载训练模型和模型评估结论:本文的目的是使用迁移学习快速、轻松地解决图像识别问题。为了演示,
- 【前沿技术杂谈:迁移学习】欧洲人工智能法案对人工智能开发者的意义 [2023 年 12 月更新]
jcfszxc
深度学习知识专栏人工智能迁移学习机器学习
【前沿技术杂谈:迁移学习】欧洲人工智能法案对人工智能开发者的意义[2023年12月更新]定义、一般原则和禁止做法人工智能系统开发者基于风险的义务固定和通用人工智能开发人员(第3/28条)基础模型的提供者(第28b条)生成人工智能模型的提供商(第28b4条)高风险人工智能系统和分类(第6/7条)治理和执行12月修正案和批准最后的评论TL;DRAI窥视,准备迎接冲击!欧盟人工智能法案即将推出,这是世界
- 低资源学习与知识图谱:构建与应用
cooldream2009
AI技术知识图谱知识图谱人工智能低资源
目录前言1低资源学习方法1.1数据增强1.2特征增强1.3模型增强2低资源知识图谱构建与推理2.1元关系学习2.2对抗学习2.3零样本关系抽取2.4零样本学习与迁移学习2.5零样本学习与辅助信息3基于知识图谱的低资源学习应用3.1零样本图像分类3.2知识增强的零样本学习3.3语义与知识信息的利用结语前言在当今人工智能领域,低资源学习成为一个备受关注的话题,尤其是在少样本学习和零样本学习方面。这种学
- 深度学习之迁移学习实现神奇宝贝识别
starlet_kiss
机器学习深度学习人工智能迁移学习
经过之前深度学习的实践,无论是自己搭建的CNN网络也好,还是通过迁移学习调用官方的网络模型也好,都有其优点以及不足。本次实验通过对各种常用的CNN网络模型进行调用,了解一下它们的特点,对比一下在对于同一数据集进行分类时的准确率。本次所调用的CNN模型有:VGG16VGG19ResNetDensenet模型1.导入库importtensorflowastfimportnumpyasnpimportm
- LLM大模型常见问题解答(2)
lichunericli
LLM人工智能语言模型
对大模型基本原理和架构的理解大型语言模型如GPT(GenerativePre-trainedTransformer)系列是基于自注意力机制的深度学习模型,主要用于处理和生成人类语言。基本原理自然语言理解:模型通过对大量文本数据的预训练,学习到语言的统计规律,从而能够在不同的语言任务上表现出自然语言理解的能力。迁移学习:GPT类模型首先在一个广泛的数据集上进行预训练,以掌握语言的通用表示,然后可以在
- 大模型注入领域知识,模型体验和Token重复知识
lichunericli
LLM人工智能语言模型
1如何给LLM注入领域知识?给LLM(低层次模型,如BERT、GPT等)注入领域知识的方法有很多。以下是一些建议:数据增强:在训练过程中,可以通过添加领域相关的数据来增强模型的训练数据。这可以包括从领域相关的文本中提取示例、对现有数据进行扩充或生成新的数据。迁移学习:使用预训练的LLM模型作为基础,然后在特定领域的数据上进行微调。这样可以利用预训练模型学到的通用知识,同时使其适应新领域。领域专家标
- 深度学习基础
EEPI
深度学习人工智能
深度学习基础highvariance/datamismatchwhatisdatamismatchhowtosolvedatamismatchdatasynthesis数据合成迁移学习与预训练/微调什么时候用迁移学习highvariance/datamismatchwhatisdatamismatch如果训练集和验证集的loss不一样,且验证集的loss高很多,有2种原因:1.方差太大。模型没见过
- 基于NSGA-II的深度迁移学习
代码缝合怪
机器学习+深度学习迁移学习人工智能机器学习
深度迁移学习迁移学习是一种机器学习技术,它允许一个预训练的模型被用作起点,在此基础上进行微调以适应新的任务或数据。其核心思想是利用从一个任务中学到的知识来帮助解决另一个相关的任务,即使这两个任务的数据分布不完全相同。这种方法可以加速学习过程,提高模型性能,并减少对新数据标注的依赖。为什么要迁移大数据与少标注的矛盾在大数据的时代背景下,我们所面临的数据量呈现爆炸性增长,同时数据类型也变得日益复杂多样
- Tensorflow2.0 查看网络中每层的名称、权重及特征图绘制
cofisher
Tensorflow2.0深度学习PHM项目实战--建模篇深度学习pythontensorflow
文章目录项目介绍实现过程1、构建网络2、查看每层名称3、查看指定层的权值4、特征图绘制项目介绍在网络训练过程中,我们经常需要查看某层权重的变化过程,这其实只需要简单的API就能实现。为了方便演示,我们使用迁移学习到的MobileNetV2网络。实现过程1、构建网络我们将冻结迁移到的MobileNetV2网络,然后将它最后的分类层换成我们自己定义的分类层即可。mobile=tf.keras.appl
- Tensorflow2.0 评价模型复杂度:参数量、FLOPs 和 MACC 计算
cofisher
深度学习PHM项目实战--建模篇tensorflow深度学习卷积python
文章目录项目介绍代码实现:对于迁移学习网络(复杂)1、迁移学习不带分类层的简化版MobileNetV2网络2、查看网络结构3、提取需要分析的层4、计算FLOPs和MACC代码实现:对于自编写网络(简单)1、导入网络2、查看网络结构3、提取需要分析的层4、计算FLOPs和MACC项目介绍在论文写作时,我们经常会对所提出模型的复杂度进行分析,主要用到的评价指标包括参数量、FLOPs和MACC,它们的计
- 【PyTorch】实现迁移学习框架DaNN
cofisher
PHM项目实战--建模篇PyTorchpytorch迁移学习人工智能
文章目录前言代码实现1、导入数据库关于torch.manual_seed(1)2、参数设置3、数据导入4、定义MMD损失5、定义训练函数5.1nn.CrossEntropyLoss()5.2.detach()5.3.sizeVS.shape5.4.to(DEVICE)5.5.max()5.6optimizer.zero_grad()
- 论文笔记:NIPS 2020 Graph Contrastive Learning with Augmentations
饮冰l
图弱监督数据挖掘机器学习神经网络深度学习
前言本文主要提出在图对比学习大框架下的图数据增强的若干方法。概括来说,本文提出了一种图对比学习框架来无监督的完成图表示学习,首先作者提出了基于各种先验信息的四种图数据增强方法。然后,作者分析了在四种不同的图数据增强条件下,不同组合对多个数据集的影响:半监督、无监督、迁移学习以及对抗性攻击。作者为GNN的预训练提出了基于图数据增强的对比学习框架来解决图中数据异质性的挑战,本文的主要贡献如下:作者提出
- 【多模态大模型】GLIP:零样本学习 + 目标检测 + 视觉语言大模型
Debroon
医学大模型:健康长寿学习目标检测人工智能
GLIP核心思想GLIP对比BLIP、BLIP-2、CLIP主要问题:如何构建一个能够在不同任务和领域中以零样本或少样本方式无缝迁移的预训练模型?统一的短语定位损失语言意识的深度融合预训练数据类型的结合语义丰富数据的扩展零样本和少样本迁移学习效果论文:https://arxiv.org/pdf/2112.03857.pdf代码:https://github.com/microsoft/GLIP核心
- 【PyTorch】实现迁移学习框架DANN
cofisher
PyTorchPHM项目实战--建模篇pytorch迁移学习人工智能
文章目录前言代码实现1、导入数据库关于torch.manual_seed(1)2、参数设置3、数据导入4、定义训练函数4.1nn.CrossEntropyLoss()4.2.detach()4.3.sizeVS.shape4.4.to(DEVICE)4.5.max()4.6optimizer.zero_grad()4.7len(data
- PyTorch 2.2 中文官方教程(十五)
绝不原创的飞龙
人工智能pytorch人工智能python
(beta)计算机视觉的量化迁移学习教程原文:pytorch.org/tutorials/intermediate/quantized_transfer_learning_tutorial.html译者:飞龙协议:CCBY-NC-SA4.0提示为了充分利用本教程,我们建议使用这个Colab版本。这将允许您尝试下面提供的信息。作者:ZafarTakhirov审阅者:RaghuramanKrishna
- Python 处理小样本数据的文档分类问题
田猿笔记
python知识库分类人工智能数据挖掘
在处理小样本数据的文档分类问题时,可以尝试使用迁移学习或者基于预训练模型的方法,如BERT、GPT等。然而,直接在这里编写一个完整的深度学习文档分类代码超出了这个平台的限制,但我可以为你提供一个基本的思路和简单示例,你可以根据这个思路进一步研究并实现。#导入必要的库fromtransformersimportBertTokenizer,BertForSequenceClassificationim
- 【文本到上下文 #10】探索地平线:GPT 和 NLP 中大型语言模型的未来
无水先生
NLP高级和ChatGPT人工智能自然语言处理gpt语言模型
一、说明 欢迎阅读我们【文本到上下文#10】:此为最后一章。以我们之前对BERT和迁移学习的讨论为基础,将重点转移到更广阔的视角,包括语言模型的演变和未来,特别是生成式预训练转换器(GPT)及其在NLP中的重要作用。 在最后一章中,我们将探讨:语言模型概述:了解它们在NLP中的作用和演变。GPT模型:深入研究GPT谱系及其影响。大型语言模型(LLM):揭示潜力和挑战。现实世界的NLP应用:这些
- AI预测-注意力机制/多头注意力机制及其tensorflow实现
写代码的中青年
AI预测人工智能tensorflowpython深度学习keras
AI预测相关目录AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容最好有基础的python算法预测经验EEMD策略及踩坑VMD-CNN-LSTM时序预测对双向LSTM等模型添加自注意力机制K折叠交叉验证optuna超参数优化框架多任务学习-模型融合策略Transformer模型及Paddle实现迁移学习在预测任务上的tensoflow2.0实现holt提取时序序列特征TCN时
- AI预测-迁移学习在时序预测任务上的tensoflow2.0实现
写代码的中青年
AI预测人工智能迁移学习机器学习神经网络pythontensorflow
AI预测相关目录AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容最好有基础的python算法预测经验EEMD策略及踩坑VMD-CNN-LSTM时序预测对双向LSTM等模型添加自注意力机制K折叠交叉验证optuna超参数优化框架多任务学习-模型融合策略Transformer模型及Paddle实现迁移学习在预测任务上的tensoflow2.0实现文章目录AI预测相关目录一、迁移
- 迁移学习Transfer Learning的优缺点,以及在使用迁移学习的注意事项!
小桥流水---人工智能
机器学习算法Python程序代码迁移学习人工智能机器学习
迁移学习TransferLearning1.迁移学习的优点和缺点:2.使用迁移学习时,需要解决以下问题:1.迁移学习的优点和缺点:迁移学习是一种机器学习方法,它可以使机器学习模型利用已有任务的学习结果,来帮助解决相似的新任务。优点:知识转移:迁移学习的核心思想是将在一个领域学到的知识应用到另一个领域。这使得我们可以在已有的数据集上训练模型,然后将这个模型应用到新的、不同的数据集上。避免重新训练:对
- 多线程编程之理财
周凡杨
java多线程生产者消费者理财
现实生活中,我们一边工作,一边消费,正常情况下会把多余的钱存起来,比如存到余额宝,还可以多挣点钱,现在就有这个情况:我每月可以发工资20000万元 (暂定每月的1号),每月消费5000(租房+生活费)元(暂定每月的1号),其中租金是大头占90%,交房租的方式可以选择(一月一交,两月一交、三月一交),理财:1万元存余额宝一天可以赚1元钱,
- [Zookeeper学习笔记之三]Zookeeper会话超时机制
bit1129
zookeeper
首先,会话超时是由Zookeeper服务端通知客户端会话已经超时,客户端不能自行决定会话已经超时,不过客户端可以通过调用Zookeeper.close()主动的发起会话结束请求,如下的代码输出内容
Created /zoo-739160015
CONNECTEDCONNECTED
.............CONNECTEDCONNECTED
CONNECTEDCLOSEDCLOSED
- SecureCRT快捷键
daizj
secureCRT快捷键
ctrl + a : 移动光标到行首ctrl + e :移动光标到行尾crtl + b: 光标前移1个字符crtl + f: 光标后移1个字符crtl + h : 删除光标之前的一个字符ctrl + d :删除光标之后的一个字符crtl + k :删除光标到行尾所有字符crtl + u : 删除光标至行首所有字符crtl + w: 删除光标至行首
- Java 子类与父类这间的转换
周凡杨
java 父类与子类的转换
最近同事调的一个服务报错,查看后是日期之间转换出的问题。代码里是把 java.sql.Date 类型的对象 强制转换为 java.sql.Timestamp 类型的对象。报java.lang.ClassCastException。
代码:
- 可视化swing界面编辑
朱辉辉33
eclipseswing
今天发现了一个WindowBuilder插件,功能好强大,啊哈哈,从此告别手动编辑swing界面代码,直接像VB那样编辑界面,代码会自动生成。
首先在Eclipse中点击help,选择Install New Software,然后在Work with中输入WindowBui
- web报表工具FineReport常用函数的用法总结(文本函数)
老A不折腾
finereportweb报表工具报表软件java报表
文本函数
CHAR
CHAR(number):根据指定数字返回对应的字符。CHAR函数可将计算机其他类型的数字代码转换为字符。
Number:用于指定字符的数字,介于1Number:用于指定字符的数字,介于165535之间(包括1和65535)。
示例:
CHAR(88)等于“X”。
CHAR(45)等于“-”。
CODE
CODE(text):计算文本串中第一个字
- mysql安装出错
林鹤霄
mysql安装
[root@localhost ~]# rpm -ivh MySQL-server-5.5.24-1.linux2.6.x86_64.rpm Preparing... #####################
- linux下编译libuv
aigo
libuv
下载最新版本的libuv源码,解压后执行:
./autogen.sh
这时会提醒找不到automake命令,通过一下命令执行安装(redhat系用yum,Debian系用apt-get):
# yum -y install automake
# yum -y install libtool
如果提示错误:make: *** No targe
- 中国行政区数据及三级联动菜单
alxw4616
近期做项目需要三级联动菜单,上网查了半天竟然没有发现一个能直接用的!
呵呵,都要自己填数据....我了个去这东西麻烦就麻烦的数据上.
哎,自己没办法动手写吧.
现将这些数据共享出了,以方便大家.嗯,代码也可以直接使用
文件说明
lib\area.sql -- 县及县以上行政区划分代码(截止2013年8月31日)来源:国家统计局 发布时间:2014-01-17 15:0
- 哈夫曼加密文件
百合不是茶
哈夫曼压缩哈夫曼加密二叉树
在上一篇介绍过哈夫曼编码的基础知识,下面就直接介绍使用哈夫曼编码怎么来做文件加密或者压缩与解压的软件,对于新手来是有点难度的,主要还是要理清楚步骤;
加密步骤:
1,统计文件中字节出现的次数,作为权值
2,创建节点和哈夫曼树
3,得到每个子节点01串
4,使用哈夫曼编码表示每个字节
- JDK1.5 Cyclicbarrier实例
bijian1013
javathreadjava多线程Cyclicbarrier
CyclicBarrier类
一个同步辅助类,它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point)。在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待,此时 CyclicBarrier 很有用。因为该 barrier 在释放等待线程后可以重用,所以称它为循环的 barrier。
CyclicBarrier支持一个可选的 Runnable 命令,
- 九项重要的职业规划
bijian1013
工作学习
一. 学习的步伐不停止 古人说,活到老,学到老。终身学习应该是您的座右铭。 世界在不断变化,每个人都在寻找各自的事业途径。 您只有保证了足够的技能储
- 【Java范型四】范型方法
bit1129
java
范型参数不仅仅可以用于类型的声明上,例如
package com.tom.lang.generics;
import java.util.List;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value =
- 【Hadoop十三】HDFS Java API基本操作
bit1129
hadoop
package com.examples.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoo
- ua实现split字符串分隔
ronin47
lua split
LUA并不象其它许多"大而全"的语言那样,包括很多功能,比如网络通讯、图形界面等。但是LUA可以很容易地被扩展:由宿主语言(通常是C或 C++)提供这些功能,LUA可以使用它们,就像是本来就内置的功能一样。LUA只包括一个精简的核心和最基本的库。这使得LUA体积小、启动速度快,从 而适合嵌入在别的程序里。因此在lua中并没有其他语言那样多的系统函数。习惯了其他语言的字符串分割函
- java-从先序遍历和中序遍历重建二叉树
bylijinnan
java
public class BuildTreePreOrderInOrder {
/**
* Build Binary Tree from PreOrder and InOrder
* _______7______
/ \
__10__ ___2
/ \ /
4
- openfire开发指南《连接和登陆》
开窍的石头
openfire开发指南smack
第一步
官网下载smack.jar包
下载地址:http://www.igniterealtime.org/downloads/index.jsp#smack
第二步
把smack里边的jar导入你新建的java项目中
开始编写smack连接openfire代码
p
- [移动通讯]手机后盖应该按需要能够随时开启
comsci
移动
看到新的手机,很多由金属材质做的外壳,内存和闪存容量越来越大,CPU速度越来越快,对于这些改进,我们非常高兴,也非常欢迎
但是,对于手机的新设计,有几点我们也要注意
第一:手机的后盖应该能够被用户自行取下来,手机的电池的可更换性应该是必须保留的设计,
- 20款国外知名的php开源cms系统
cuiyadll
cms
内容管理系统,简称CMS,是一种简易的发布和管理新闻的程序。用户可以在后端管理系统中发布,编辑和删除文章,即使您不需要懂得HTML和其他脚本语言,这就是CMS的优点。
在这里我决定介绍20款目前国外市面上最流行的开源的PHP内容管理系统,以便没有PHP知识的读者也可以通过国外内容管理系统建立自己的网站。
1. Wordpress
WordPress的是一个功能强大且易于使用的内容管
- Java生成全局唯一标识符
darrenzhu
javauuiduniqueidentifierid
How to generate a globally unique identifier in Java
http://stackoverflow.com/questions/21536572/generate-unique-id-in-java-to-label-groups-of-related-entries-in-a-log
http://stackoverflow
- php安装模块检测是否已安装过, 使用的SQL语句
dcj3sjt126com
sql
SHOW [FULL] TABLES [FROM db_name] [LIKE 'pattern']
SHOW TABLES列举了给定数据库中的非TEMPORARY表。您也可以使用mysqlshow db_name命令得到此清单。
本命令也列举数据库中的其它视图。支持FULL修改符,这样SHOW FULL TABLES就可以显示第二个输出列。对于一个表,第二列的值为BASE T
- 5天学会一种 web 开发框架
dcj3sjt126com
Web框架framework
web framework层出不穷,特别是ruby/python,各有10+个,php/java也是一大堆 根据我自己的经验写了一个to do list,按照这个清单,一条一条的学习,事半功倍,很快就能掌握 一共25条,即便很磨蹭,2小时也能搞定一条,25*2=50。只需要50小时就能掌握任意一种web框架
各类web框架大同小异:现代web开发框架的6大元素,把握主线,就不会迷路
建议把本文
- Gson使用三(Map集合的处理,一对多处理)
eksliang
jsongsonGson mapGson 集合处理
转载请出自出处:http://eksliang.iteye.com/blog/2175532 一、概述
Map保存的是键值对的形式,Json的格式也是键值对的,所以正常情况下,map跟json之间的转换应当是理所当然的事情。 二、Map参考实例
package com.ickes.json;
import java.lang.refl
- cordova实现“再点击一次退出”效果
gundumw100
android
基本的写法如下:
document.addEventListener("deviceready", onDeviceReady, false);
function onDeviceReady() {
//navigator.splashscreen.hide();
document.addEventListener("b
- openldap configuration leaning note
iwindyforest
configuration
hostname // to display the computer name
hostname <changed name> // to change
go to: /etc/sysconfig/network, add/modify HOSTNAME=NEWNAME to change permenately
dont forget to change /etc/hosts
- Nullability and Objective-C
啸笑天
Objective-C
https://developer.apple.com/swift/blog/?id=25
http://www.cocoachina.com/ios/20150601/11989.html
http://blog.csdn.net/zhangao0086/article/details/44409913
http://blog.sunnyxx
- jsp中实现参数隐藏的两种方法
macroli
JavaScriptjsp
在一个JSP页面有一个链接,//确定是一个链接?点击弹出一个页面,需要传给这个页面一些参数。//正常的方法是设置弹出页面的src="***.do?p1=aaa&p2=bbb&p3=ccc"//确定目标URL是Action来处理?但是这样会在页面上看到传过来的参数,可能会不安全。要求实现src="***.do",参数通过其他方法传!//////
- Bootstrap A标签关闭modal并打开新的链接解决方案
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
Bootstrap里面的js modal控件使用起来很方便,关闭也很简单。只需添加标签 data-dismiss="modal" 即可。
可是偏偏有时候需要a标签既要关闭modal,有要打开新的链接,尝试多种方法未果。只好使用原始js来控制。
<a href="#/group-buy" class="btn bt
- 二维数组在Java和C中的区别
流淚的芥末
javac二维数组数组
Java代码:
public class test03 {
public static void main(String[] args) {
int[][] a = {{1},{2,3},{4,5,6}};
System.out.println(a[0][1]);
}
}
运行结果:
Exception in thread "mai
- systemctl命令用法
wmlJava
linuxsystemctl
对比表,以 apache / httpd 为例 任务 旧指令 新指令 使某服务自动启动 chkconfig --level 3 httpd on systemctl enable httpd.service 使某服务不自动启动 chkconfig --level 3 httpd off systemctl disable httpd.service 检查服务状态 service h