PyTorch 对应点相乘、矩阵相乘

一,对应点相乘,x.mul(y) ,即点乘操作,点乘不求和操作,又可以叫作Hadamard product;点乘再求和,即为卷积

data = [[1,2], [3,4], [5, 6]]
tensor = torch.FloatTensor(data)

tensor
Out[27]: 
tensor([[ 1.,  2.],
        [ 3.,  4.],
        [ 5.,  6.]])

tensor.mul(tensor)
Out[28]: 
tensor([[  1.,   4.],
        [  9.,  16.],
        [ 25.,  36.]])

二,矩阵相乘,x.mm(y) , 矩阵大小需满足: (i, n)x(n, j)

tensor
Out[31]: 
tensor([[ 1.,  2.],
        [ 3.,  4.],
        [ 5.,  6.]])

tensor.mm(tensor.t())  # t()是转置
Out[30]: 
tensor([[  5.,  11.,  17.],
        [ 11.,  25.,  39.],
        [ 17.,  39.,  61.]])

 

你可能感兴趣的:(PyTorch)