奇异值分解基础(SVD)

最近要了解一下Incremental PCA的一些知识,然后看到一篇论文里面讲到了SVD(奇异值分解),奈何自己以前没有把机器学习的课好好上,现在很多东西还是要补回来。所以,我就想了解一些SVD的基础知识。
PCA的实现一般有两种方法,一种是用特征值分解去实现,一种是用奇异值分解去实现的,SVD貌似在很多领域都有很重要的应用。

特征值和特征向量

特征值和特征向量是线性代数里面的基础知识,相信大部分人都知道:
这里写图片描述
很显然,λ就是特征向量v对应的特征值,一个矩阵的一组特征向量都是相互正交的,相信这些大家在线性代数都有学习。特征值分解是将一个矩阵以下面的形式进行分解:
这里写图片描述
其中Q是这个矩阵A的特征向量组成的矩阵,Σ是一个对角矩阵,每一个对角线上的元素就是一个特征值。
特征值分解可以得到特征值和特征向量,特征值表示的是这个特征值的重要性,而特征向量表示的是这个特征是什么,可以将每一个特征向量理解为一个线性的子空间。不过特征值分解也有很多的局限,比如变换的矩阵必须是方阵。

奇异值

特征值分解只能针对于方阵,局限性较大,而奇异值分解是一个能够用于任意的矩阵的一种分解方法:
这里写图片描述
假设A是一个N*M的矩阵,那么U是一个N*N的方阵(里面的向量是正交的,U里面的向量称为左奇异向量),Σ是一个N*M的矩阵(除了对角线的元素都是0,对角线上的元素称为奇异值),V’(V的转置矩阵)是一个N*N的矩阵,里面的向量也是正教的,称为右奇异向量。
奇异值分解基础(SVD)_第1张图片
我们将矩阵A和他的转置矩阵相乘,就可以得到一个方阵,我们利用方阵的求特征值可以得到:
这里写图片描述
这里面的v,就是我们上面所说的右奇异向量,由此我们可以得到
奇异值分解基础(SVD)_第2张图片
这里的σ就是上面所说的奇异值,u就是上面说的左奇异向量。奇异值σ跟特征值类似,在矩阵Σ中也是从打到小排列,而且σ的减少特别的快。在很多情况下,前10%的甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。也就是说,我们可以用前r大的奇异值来近似描述矩阵,因此部分奇异值分解可以如下定义:
这里写图片描述
r是一个远小于m、n的数,
奇异值分解基础(SVD)_第3张图片
右边的三个矩阵相乘的结果将会是一个接近于A的矩阵,r越接近于n,则相乘的结果越接近于A。而这三个矩阵的面积之和要远远小于原始的矩阵A。

SVD和PCA

PCA的问题其实是一个基的变换,使得变换后的数据有着最大的方差。方差的大小描述的是一个变量的信息量,我们在讲一个东西的稳定性的时候,往往说要减小方差,如果一个模型的方差很大,那就说明模型不稳定了。但是对于机器学习的数据,方差大反而有意义,不然输入的数据就是同一个点了,那方差九尾0了。
奇异值分解基础(SVD)_第4张图片
这个假设是一个摄像机采集一个物体运动得到的图片,上面的点表示物体运动的位置,假设我们想用一条直线去拟合这些点,那我们应该选择什么方向的线?当然是图上标有signal的那条线。如果我们把这些点单纯的投影到x轴或者y轴上,最后在x轴和y轴上得到的方差就是相似的。
一般来说方差大的方向就是信号的方向,方差小的方向就是噪声的方向,我们在数据挖掘或者数字信号处理中,往往是要提高信噪比。就上图说,如果我们只保留signal方向的数据,就可以对原始数据进行不错的近似了。
PCA的就是对原始的空间中顺序地找一组相互正教的坐标轴,第一个轴使得方差最大,第二个轴是在与第一个轴相交的平面中使得方差最大,第三个轴也是在与第1,2个轴正交的平面中使得方差最大,这种假设在N维空间中,我们就可以找到N个这样的坐标轴,我们取前r个去近似这个空间,这样就从一个N维的空间压缩到r维的空间,但是我们可以选择r个坐标轴使得空间的压缩使得数据的损失最小。
假设我们矩阵的每一行代表一个样本,每一列代表一个feature,将一个m*n的矩阵A进行坐标轴的变化,P就是一个变换的矩阵从一个n维的空间变换到另外一个n维的空间
这里写图片描述
这里写图片描述
而将一个m*n的矩阵A变成一个m*r的矩阵,我们就会使得本来有n个feature的,变成有r个feature了(r小于n),这r个其实就是对n个feature的一种提炼,我们把这个称为feature的压缩:
之前的SVD的式子是:
这里写图片描述
在矩阵的两边同时乘上一个矩阵V,由于v是一个正交的矩阵
奇异值分解基础(SVD)_第5张图片
我们对SVD分解的式子两边乘以U的转置矩阵U’
这里写图片描述
PCA几乎可以说是对SVD的一种包装,如果我们实现了SVD,那也就实现了PCA。

你可能感兴趣的:(机器学习)