HBase-Spark Connector(在HBase-Spark 模块中)利用了在Spark-1.2.0中引入的DataSource API(SPARK-3247),在简单的HBase KV存储和复杂的关系型SQL查询之间架起了桥梁,使得用户可以在HBase上使用Spark执行复杂的数据分析工作。HBase Dataframe是一个标准的Spark Dataframe,能够与任何其他的数据源进行交互,比如Hive,Orc,Parquet,JSON等。HBase-Spark Connector应用了关键技术,如分区剪枝(partition pruning),列剪枝(column pruning),谓詞下推(predicate pushdown)和数据局部性(data locality)。
要使用HBase-Spark Connector,用户需要定义在HBase和Spark表之间的映射关系的schema目录,准备数据,并且填充到HBase表中,然后加载HBase Dataframe。之后,用户可以使用SQL查询做集成查询和访问记录HBase的表。以下描述了这个的基本步骤:
1、定义目录(Define catalog)
2、保存DataFrame
3、加载DataFrame
4、SQL 查询
1.
def catalog = s"""{
|"table":{"namespace":"default", "name":"table1"},
|"rowkey":"key",
|"columns":{
|"col0":{"cf":"rowkey", "col":"key", "type":"string"},
|"col1":{"cf":"cf1", "col":"col1", "type":"boolean"},
|"col2":{"cf":"cf2", "col":"col2", "type":"double"},
|"col3":{"cf":"cf3", "col":"col3", "type":"float"},
|"col4":{"cf":"cf4", "col":"col4", "type":"int"},
|"col5":{"cf":"cf5", "col":"col5", "type":"bigint"},
|"col6":{"cf":"cf6", "col":"col6", "type":"smallint"},
|"col7":{"cf":"cf7", "col":"col7", "type":"string"},
|"col8":{"cf":"cf8", "col":"col8", "type":"tinyint"}
|}
|}""".stripMargin
2.
case class HBaseRecord(
col0: String,
col1: Boolean,
col2: Double,
col3: Float,
col4: Int,
col5: Long,
col6: Short,
col7: String,
col8: Byte)
object HBaseRecord
{
def apply(i: Int, t: String): HBaseRecord = {
val s = s"""row${"%03d".format(i)}"""
HBaseRecord(s,
i % 2 == 0,
i.toDouble,
i.toFloat,
i,
i.toLong,
i.toShort,
s"String$i: $t",
i.toByte)
}
}
val data = (0 to 255).map { i => HBaseRecord(i, "extra")}
sc.parallelize(data).toDF.write.options(
Map(HBaseTableCatalog.tableCatalog -> catalog, HBaseTableCatalog.newTable -> "5"))
.format("org.apache.hadoop.hbase.spark ")
.save()
由用户准备的data是具有256个HBaseRecord对象的本地Scala集合。sc.parallelize(data)函数分配data以形成RDD。toDF 返回一个DataFrame。write函数返回一个用于将DataFrame写入外部存储系统的DataFrameWriter(例如 HBase)。给定一个具有指定模式CataLog的DataFrame,save函数将创建一个包含5个区域的HBase表,并将DataFrame保存在里面。
3.
def withCatalog(cat: String): DataFrame = {
sqlContext
.read
.options(Map(HBaseTableCatalog.tableCatalog->cat))
.format("org.apache.hadoop.hbase.spark")
.load()
}
val df = withCatalog(catalog)
val s = df.filter(($"col0" <= "row050" && $"col0" > "row040") ||
$"col0" === "row005" ||
$"col0" <= "row005")
.select("col0", "col1", "col4")
s.show
DataFrame可以执行各种操作,如连接,排序,选择,过滤,orderBy等等。上面的df.filter使用给定的SQL表达式过滤行。 select选择一组列:col0,col1和col4。
df.registerTempTable("table1")
sqlContext.sql("select count(col1) from table1").show
registerTempTable使用表名table1将df DataFrame注册为临时表。
此临时表的生命周期与用于创建df的SQLContext绑定。
sqlContext.sql函数允许用户执行SQL查询