BPE:迭代的将字符串里出现频率最高的子串进行合并
训练过程
代码使用的语料在这里
# -*- coding: utf-8 -*-
#/usr/bin/python3
import os
import errno
import sentencepiece as spm
import re
import logging
logging.basicConfig(level=logging.INFO)
def prepro(hp):
print("# Check if raw files exist")
train1 = "iwslt2016/de-en/train.tags.de-en.de"
train2 = "iwslt2016/de-en/train.tags.de-en.en"
eval1 = "iwslt2016/de-en/IWSLT16.TED.tst2013.de-en.de.xml"
eval2 = "iwslt2016/de-en/IWSLT16.TED.tst2013.de-en.en.xml"
test1 = "iwslt2016/de-en/IWSLT16.TED.tst2014.de-en.de.xml"
test2 = "iwslt2016/de-en/IWSLT16.TED.tst2014.de-en.en.xml"
for f in (train1, train2, eval1, eval2, test1, test2):
if not os.path.isfile(f):
raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), f)
print("# Preprocessing")
# train
_prepro = lambda x: [line.strip() for line in open(x, mode='r',encoding="utf-8").read().split("\n") \
if not line.startswith("<")]
prepro_train1, prepro_train2 = _prepro(train1), _prepro(train2)
assert len(prepro_train1)==len(prepro_train2), "Check if train source and target files match."
# eval
_prepro = lambda x: [re.sub("<[^>]+>", "", line).strip() \
for line in open(x, mode='r',encoding="utf-8").read().split("\n") \
if line.startswith(")]
prepro_eval1, prepro_eval2 = _prepro(eval1), _prepro(eval2)
assert len(prepro_eval1) == len(prepro_eval2), "Check if eval source and target files match."
# test
prepro_test1, prepro_test2 = _prepro(test1), _prepro(test2)
assert len(prepro_test1) == len(prepro_test2), "Check if test source and target files match."
print("Let's see how preprocessed data look like")
print("prepro_train1:", prepro_train1[0])
print("prepro_train2:", prepro_train2[0])
print("prepro_eval1:", prepro_eval1[0])
print("prepro_eval2:", prepro_eval2[0])
print("prepro_test1:", prepro_test1[0])
print("prepro_test2:", prepro_test2[0])
print("# write preprocessed files to disk")
os.makedirs("iwslt2016/prepro", exist_ok=True)
def _write(sents, fname):
with open(fname, mode='w',encoding="utf-8") as fout:
fout.write("\n".join(sents))
_write(prepro_train1, "iwslt2016/prepro/train.de")
_write(prepro_train2, "iwslt2016/prepro/train.en")
_write(prepro_train1+prepro_train2, "iwslt2016/prepro/train")
_write(prepro_eval1, "iwslt2016/prepro/eval.de")
_write(prepro_eval2, "iwslt2016/prepro/eval.en")
_write(prepro_test1, "iwslt2016/prepro/test.de")
_write(prepro_test2, "iwslt2016/prepro/test.en")
print("# Train a joint BPE model with sentencepiece")
os.makedirs("iwslt2016/segmented", exist_ok=True)
train = '--input=iwslt2016/prepro/train --pad_id=0 --unk_id=1 \
--bos_id=2 --eos_id=3\
--model_prefix=iwslt2016/segmented/bpe --vocab_size={} \
--model_type=bpe'.format(hp.vocab_size)
spm.SentencePieceTrainer.Train(train)
print("# Load trained bpe model")
sp = spm.SentencePieceProcessor()
sp.Load("iwslt2016/segmented/bpe.model")
print("# Segment")
def _segment_and_write(sents, fname):
with open(fname,mode= "w",encoding="utf-8") as fout:
for sent in sents:
pieces = sp.EncodeAsPieces(sent)
fout.write(" ".join(pieces) + "\n")
_segment_and_write(prepro_train1, "iwslt2016/segmented/train.de.bpe")
_segment_and_write(prepro_train2, "iwslt2016/segmented/train.en.bpe")
_segment_and_write(prepro_eval1, "iwslt2016/segmented/eval.de.bpe")
_segment_and_write(prepro_eval2, "iwslt2016/segmented/eval.en.bpe")
_segment_and_write(prepro_test1, "iwslt2016/segmented/test.de.bpe")
print("Let's see how segmented data look like")
print("train1:", open("iwslt2016/segmented/train.de.bpe",mode='r',encoding="utf-8").readline())
print("train2:", open("iwslt2016/segmented/train.en.bpe", mode='r',encoding="utf-8").readline())
print("eval1:", open("iwslt2016/segmented/eval.de.bpe", mode='r',encoding="utf-8").readline())
print("eval2:", open("iwslt2016/segmented/eval.en.bpe", mode='r',encoding="utf-8").readline())
print("test1:", open("iwslt2016/segmented/test.de.bpe", mode='r',encoding="utf-8").readline())
if __name__ == '__main__':
hparams = Hparams()
parser = hparams.parser
hp = parser.parse_args()
prepro(hp)
print("Done")