- 合并两个有序链表
陆仁贾笨贾
链表数据结构
题目:将两个升序链表合并为一个新的升序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。示例1:输入:l1=[1,2,4],l2=[1,3,4]输出:[1,1,2,3,4,4]思路:虚拟头结点:使用一个虚拟头结点(dummy)来简化链表操作。虚拟头结点的next指针指向合并后的链表的头结点。通过一个指针p来追踪新链表的最后一个节点。遍历链表:使用两个指针p1和p2分别遍历链表l1和l2。
- 机器学习是怎么一步一步由神经网络发展到今天的Transformer架构的?
yuanpan
机器学习神经网络transformer
机器学习和神经网络的发展经历了一系列重要的架构和技术阶段。以下是更全面的总结,涵盖了从早期神经网络到卷积神经网络之前的架构演变:1.早期神经网络:感知机(Perceptron)时间:1950年代末至1960年代。背景:感知机由FrankRosenblatt提出,是第一个具有学习能力的神经网络模型。它由单层神经元组成,可以用于简单的二分类任务。特点:输入层和输出层之间直接连接,没有隐藏层。使用简单的
- 基于python的ansys_基于python的感知机
weixin_39687990
基于python的ansys
一、1、感知机可以描述为一个线性方程,用python的伪代码可表示为:sum(weight_i*x_i)+bias->activation#activation表示激活函数,x_i和weight_i是分别为与当前神经元连接的其它神经元的输入以及连接的权重。bias表示当前神经元的输出阀值(或称偏置)。箭头(->)左边的数据,就是激活函数的输入2、定义激活函数f:deffunc_activator(
- C++初阶——C++内存管理
Clrove.11
C++初阶教程c++算法开发语言c语言内存管理类与对象
一、C语言动态内存管理#includeusingnamespacestd;intmain(){int*p1=(int*)malloc(sizeof(int));free(p1);int*p2=(int*)calloc(4,sizeof(int));int*p3=(int*)realloc(p2,sizeof(int)*10);free(p3);}C语言中,存在三个用于动态分配内存的函数:mallo
- 代码随想录算法训练营第六十四天| 图论09
Rachela_z
算法图论
dijkstra(堆优化版)精讲代码随想录importheapqclassEdge:def__init__(self,to,val):self.to=toself.val=valdefdijkstra(n,m,edges,start,end):grid=[[]for_inrange(n+1)]forp1,p2,valinedges:grid[p1].append(Edge(p2,val))minD
- 人工智能技术篇*卷(三)
code_stream
#人工智能人工智能
接下来,我们在神经网络方面继续展开神经网络多层感知机(MLP)解决问题:多层感知机是一种基本的前馈神经网络,可用于解决分类和回归问题。它通过多个神经元层的非线性变换,能够学习复杂的非线性关系,对数据进行分类或预测连续值。例如,在手写数字识别中,它可以从数字图像的像素数据中学习到特征模式,从而判断该数字是0-9中的哪一个;在房价预测中,根据房屋的面积、房间数量等特征预测房价。案例:以手写数字识别为例
- 机器学习 [白板推导](三)[线性分类]
神齐的小马
机器学习分类人工智能
4.线性分类4.1.线性分类的典型模型硬分类:输出结果只有0或1这种离散结果;感知机线性判别分析Fisher软分类:会输出0-1之间的值作为各个类别的概率;概率生成模型:高斯判别分析GDA、朴素贝叶斯,主要建模的是p(x⃗,y)p(\vec{x},y)p(x,y)概率判别模型:逻辑回归,主要建模的是p(y∣x⃗)p(y|\vec{x})p(y∣x)4.2.感知机4.2.1.基本模型 模型:f(x
- 模型可解释性:基于博弈论的SHAP值计算与特征贡献度分析(附PyTorch/TensorFlow实现)
燃灯工作室
Aipytorchtensorflow人工智能
一、技术原理与数学推导(含典型案例)1.1Shapley值基础公式SHAP值基于合作博弈论中的Shapley值,计算公式为:ϕi=∑S⊆F∖{i}∣S∣!(∣F∣−∣S∣−1)!∣F∣![f(S∪{i})−f(S)]\phi_i=\sum_{S\subseteqF\setminus\{i\}}\frac{|S|!(|F|-|S|-1)!}{|F|!}[f(S\cup\{i\})-f(S)]ϕi=S
- 基于时间序列预测的推理服务弹性扩缩容实战指南:(行业案例+数学推导+源码解析)
燃灯工作室
Ai计算机视觉语音识别目标检测机器学习人工智能
技术原理(数学公式)整体架构请求量预测→扩缩容决策→资源配置动态调整三阶段闭环,周期为5-30分钟核心预测模型(时间序列预测)LSTM预测公式(CSDN兼容格式):$$h_t=\text{LSTM}(x_t,h_{t-1})\\\hat{y}_{t+1}=W_h\cdoth_t+b_h$$其中Wh∈Rd×1W_h\in\mathbb{R}^{d\times1}Wh∈Rd×1为权重矩阵,ddd为隐藏
- (二分 数学推导区间 两个数组的距离值)leetcode 1385
维齐洛波奇特利(male)
算法
数学推导:设arr1[i]=x则|x-arr2[j]|x+d而这个数t有三种可能1.刚好等于x-d不满足条件2.大于x-d但是小于等于x+d不满足条件3.大于x+d满足条件那arr2中小于t的值呢,因为t>=x-d所以arr2&arr1,vector&arr2,intd){sort(arr2.begin(),arr2.end());intans=0;for(autox:arr1){autot=ra
- Transformer动画讲解 - 工作原理
ghx3110
transformer深度学习人工智能
Transformer模型在多模态数据处理中扮演着重要角色,其能够高效、准确地处理包含不同类型(如图像、文本、音频、视频等)的多模态数据。Transformer工作原理四部曲:Embedding(向量化)、Attention(注意力机制)、MLPs(多层感知机)和Unembedding(模型输出)。阶段一:Embedding(向量化)“Embedding”在字面上的翻译是“嵌入”,但在机器学习和自
- OTSU算法(大津算法)
天行者@
算法opencv人工智能二值化
Otsu算法(大津算法)是一种经典的图像二值化方法,其核心是通过最大化类间方差自动确定全局阈值。以下是其具体工作原理和步骤:1.基本思想假设图像由前景(目标)和背景两部分组成,且两者的灰度分布存在明显差异(直方图呈现双峰)。Otsu算法通过寻找一个阈值,使得前景与背景之间的类间方差最大,从而将图像分割为二值图。2.数学推导(1)计算灰度直方图统计图像中每个灰度值的像素个数,得到直方图h[i](i为
- C++深入浅出(六)—— 模板初阶
Albert Edison
深入C++世界c++开发语言类模板函数模板
文章目录1.泛型编程2.函数模板概念格式原理实例化隐式实例化显示实例化模板参数的匹配原则原则一原则二原则三3.类模板格式类模板的实例化1.泛型编程还记得在C语言中,如何实现交换两个对象的函数嘛?代码示例//交换两个整型变量voidSwap1(int*p1,int*p2){inttmp=*p1;
- 探地雷达F-K偏移算法详解与Python实现
T2ccc
探地雷达算法python
探地雷达F-K偏移算法详解与Python实现文章目录探地雷达F-K偏移算法详解与Python实现前言一、探地雷达成像原理与偏移的必要性二、F-K偏移的基本原理2.1波的传播与频率-波数域2.2F-K偏移的基本思路三、F-K偏移算法的数学推导3.1二维傅里叶变换3.2波场外推3.3Stolt映射(核心步骤)3.4逆变换四、F-K偏移的Python代码实现4.1辅助函数和数据准备4.2F-K偏移核心函
- 信号处理抽取多项滤波的数学推导与仿真
jz_ddk
信号处理python算法
昨天的《信号处理之插值、抽取与多项滤波》,已经介绍了插值抽取的多项滤率,今天详细介绍多项滤波的数学推导,并附上实战仿真代码。一、数学变换推导1.多相分解的核心思想将FIR滤波器的系数h(n)h(n)h(n)按相位分组,每组对应输入信号的不同抽样相位。通过分相、滤波、重组,实现与原FIR等效的处理。2.数学变换推导FIR滤波器的系统函数可表示为:H(z)=∑n=0N−1h(n)z−nH(z)=\su
- 【梯度下降算法】
蝉叫醒了夏天
机器学习算法
梯度下降算法:第一章梯度下降的历史沿革1.1优化方法的演进脉络从17世纪牛顿时代的数值解法,到20世纪最优控制理论的发展,直至现代机器学习对优化算法的特殊需求,梯度下降算法在数学优化史上占据重要地位。1947年FrankRosenblatt在感知机研究中首次系统应用梯度下降思想1.2机器学习时代的复兴21世纪深度学习革命使梯度下降算法获得新生:2006年Hinton团队在深度信念网络中的突破应用2
- 【深度学习】从全连接层到卷积
熙曦Sakura
深度学习深度学习人工智能
从全连接层到卷积我们之前讨论的多层感知机十分适合处理表格数据,其中行对应样本,列对应特征。对于表格数据,我们寻找的模式可能涉及特征之间的交互,但是我们不能预先假设任何与特征交互相关的先验结构。此时,多层感知机可能是最好的选择,然而对于高维感知数据,这种缺少结构的网络可能会变得不实用。例如,在之前猫狗分类的例子中:假设我们有一个足够充分的照片数据集,数据集中是拥有标注的照片,每张照片具有百万级像素,
- 如何提升OmniParser V2的小元素识别率——YOLOv8 增加 P2 层的性能变化解析
AI-AIGC-7744423
目标跟踪人工智能计算机视觉
YOLOv8增加P2层通过牺牲部分计算效率换取了小目标检测性能的显著提升,尤其适用于高分辨率、小目标密集的场景。开发者需根据具体任务需求,在精度与速度之间进行合理权衡,并通过模型轻量化技术优化部署效果。更多技术细节可参考微软等机构的开源实现136。YOLOv8增加P2层的性能变化解析一、性能提升方向小目标检测精度显著提高原理:P2层对应更高分辨率的浅层特征图(如1/4下采样),能捕捉更细粒度的纹理
- 指针高级06【数组指针】-黑马程序员C语言
c
数组指针的基本用法概念:指向数组的指针,叫做数组指针作用:方便操作数组中的各种数据#include"stdio.h"intmain(){intarr[]={10,20,30,40,50};intlen=sizeof(arr)/sizeof(int);//获取数组的指针//实际上获取数据的首地址int*p1=arr;int*p2=&arr[0];printf("%p\n",p1);printf("%
- 1.动手学习深度学习课程安排及深度学习数学基础
Unknown To Known
动手学习深度学习深度学习人工智能
视频资源B站:动手学习深度学习——李沐目录目标内容将学到什么1.N维数组样例2.访问2维数组元素3.数据操作4.线性代数5.矩阵计算6.自动求导目标介绍深度学习景点和最新模型LeNetAlexNetVGGResNetLSTMBERT…机器学习基础损失函数,目标函数,过拟合,优化实践使用pytorch实现介绍的知识点在真实数据上体验算法效果内容深度学习基础——线性神经网络,多层感知机卷积神经网络——
- 动手学深度学习V2.0(Pytorch)——10.感知机(激活函数)
吨吨不打野
动手学深度学习pytorchpytorch深度学习机器学习
文章目录1.感知机2.多层感知机2.1异或问题2.2单隐藏层2.3激活函数2.3.1logistics函数/sigmoid激活函数2.3.2tanh函数2.3.3sigmoid函数和tanh函数的异同/优缺点2.3.4relu2.4多类分类2.5多隐藏层3Q&A3.1神经网络中一层的定义是什么3.2感知机无法解决XOR问题,多层感知机虽然可以解决,但是还是被SVM替代是为什么?3.3不同任务的激活
- 机器学习(Machine Learning)
七指琴魔御清绝
大数据学习
原文链接:http://blog.csdn.net/zhoubl668/article/details/42921187希望转载的朋友,你可以不用联系我.但是一定要保留原文链接,因为这个项目还在继续也在不定期更新.希望看到文章的朋友能够学到更多.《BriefHistoryofMachineLearning》介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM、Ada
- 学习总结项目
苏小夕夕
学习人工智能深度学习机器学习
近段时间学习了机器学习、线性回归和softmax回归、多层感知机、卷积神经网络、Pytorch神经网络工具箱、Python数据处理工具箱、图像分类等的知识,学习了利用神经网络实现cifar10的操作、手写图像识别项目以及其对应的实验项目报告总结。项目总结本次项目我使用了VGG19模型、AlexNet模型和已使用的VGG16模型进行对比,在已有的条件下,对代码进行更改是,结果展示中,VGG19模型的
- 支持向量机 SVM 简要介绍
_夜空的繁星_
机器学习svm支持向量机拉格朗日对偶机器学习
那些我从来没有理解过的概念(1)下面是我在学习过程中遇到的对我很难理解的概念和我抄下来的笔记主要资料来源:《统计学习方法》,维基百科拉格朗日对偶问题是什么假设f(x),ci(x),hj(x)是定义在Rn上的连续可微函数,考虑以下最优化问题:$$\min_{x\inR^n}{f(x)}\c_i(x)\leq0,i=1,2,\dots,k\h_j(x)=0,j=1,2,\dots,l$$是一个凸优化问
- python刷题:哥德巴赫猜想
小赵睡不醒:
pythonpython算法开发语言
Description哥德巴赫猜想:对于任一个大于或等于4的偶数n,至少存在一对素数p1和p2,使得n=p1+p2。这个猜想目前既没有被证明,也没有被否定。没有人确定这个猜想是否成立。但是,如果对于给定的一个偶数,存在这样一对素数的话,人们是可以找到的。我们的要求是编写一个程序,对于给定的一个偶数,计算出存在多少对素数满足这个猜想。在输入中给出一系列偶数。对于每一个数,程序输出存在的素数对数。注意
- 基于视场角,高度重叠率,选装角度的无人机区域巡检航线规划
1028_左傲杰
无人机
importmathfromshapely.geometryimportPolygon,LineStringdefcalculate_route_with_angle(area_coords,fov_angle,altitude,overlap,line_angle):defline_intersection(p1,p2,p3,p4):"""计算两条线段的交点"""line1=LineString
- GAN开山之作--Generative Adversarial Nets
星空彡
深度学习机器学习神经网络
GAN开山之作–GenerativeAdversarialNets最近对GAN比较有兴趣,所以开个坑记录一下读论文学习的知识。这是本专栏的第一篇论文,所以笔者认为解析GAN的开山之作——GenerativeAdversarialNets[1]是非常有必要的。有关数学推导部分本文借鉴了深度之眼的b站发布的视频[2]。本文并不是逐字翻译,主要是写笔者对这篇论文的见解思考,其中难免会有错的地方,欢迎讨论
- (Pytorch)动手学深度学习:基础内容(持续更新)
孔表表uuu
神经网络深度学习pytorch人工智能
深度学习前言环境安装(Windows)安装anaconda使用conda或miniconda创建环境下载所需的包下载代码并执行(课件代码)关于线性代数内积(数量积、点乘)外积关于数据操作X.sum(0,keepdim=True)和X.sum(1,keepdim=True)广播机制(broadcast)Softmax函数和交叉熵损失函数Softmax函数交叉熵损失函数感知机多层感知机前言之前看吴恩达
- LabVIEW基于双通道FFT共轭相乘的噪声抑制
LabVIEW开发
LabVIEW知识LabVIEW参考程序LabVIEW功能LabVIEW伺服阀
对于双通道采集的含噪信号,通过FFT获取复数频谱后,对第二通道频谱取共轭并与第一通道频谱相乘,理论上可增强相关信号成分并抑制非相关噪声。此方法适用于通道间信号高度相关、噪声独立的场景(如共模干扰抑制)。以下为LabVIEW实现方案及案例验证。实现原理与步骤1.核心数学推导设两通道信号为:通道1:S1(t)=Signal(t)+Noise1(t)通道2:S2(t)=Signal(t)+Noise2(
- c++,归并排序
慕容晓开
日常学习c++算法
#include#include#include#include#includeusingnamespacestd;voidmerge_sort(int*arr,intl,intr){if(r-l<=1)return;intmid=(l+r)/2;merge_sort(arr,l,mid);merge_sort(arr,mid,r);intp1=l,p2=mid,k=0;int*temp=(int
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,