目录
一、问题
二、思考
三、实验
四、解决方法
博主在写采样器时将dataset的类对象赋值给data_source,然后准备对data_source取样,总是提示在__getitem__()函数提示越界。
换言之,在对dataset对象进行迭代取样时其__len__()方法似乎失效了。。。
博主做了如下实验,利用Pytorch的FakeData类进行以上猜想的证实。FakeData定义如下:
import torch
import torch.utils.data as data
from .. import transforms
class FakeData(data.Dataset):
"""A fake dataset that returns randomly generated images and returns them as PIL images
Args:
size (int, optional): Size of the dataset. Default: 1000 images
image_size(tuple, optional): Size if the returned images. Default: (3, 224, 224)
num_classes(int, optional): Number of classes in the datset. Default: 10
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
random_offset (int): Offsets the index-based random seed used to
generate each image. Default: 0
"""
def __init__(self, size=1000, image_size=(3, 224, 224), num_classes=10,
transform=None, target_transform=None, random_offset=0):
self.size = size
self.num_classes = num_classes
self.image_size = image_size
self.transform = transform
self.target_transform = target_transform
self.random_offset = random_offset
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is class_index of the target class.
"""
# create random image that is consistent with the index id
rng_state = torch.get_rng_state()
torch.manual_seed(index + self.random_offset)
img = torch.randn(*self.image_size)
target = torch.Tensor(1).random_(0, self.num_classes)[0]
torch.set_rng_state(rng_state)
# convert to PIL Image
img = transforms.ToPILImage()(img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return self.size
def __repr__(self):
fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
fmt_str += ' Number of datapoints: {}\n'.format(self.__len__())
tmp = ' Transforms (if any): '
fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
tmp = ' Target Transforms (if any): '
fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
return fmt_str
代码如下:
from torch.utils.data import DataLoader
from torchvision import transforms
import torchvision
fake_dataset = torchvision.datasets.FakeData(
size=100,
image_size=(3, 256, 128),
num_classes=751,
transform=transforms.Compose([
transforms.Resize((384, 128),interpolation=3),
transforms.ToTensor(),
])
)
for i, batches in enumerate(fake_dataset):
print(i)
fake_loader = DataLoader(
fake_dataset,
batch_size=4,
shuffle=True
)
# for i, batches in enumerate(fake_loader):
# print(i)
结果是无限输入更新的i。。。
0
1
2
3
4
5
6
7
8
9
...
100
101
102
....
那么怎么办呢?
加上一个DataLoader作为dataset的迭代器就好了:
from torch.utils.data import DataLoader
from torchvision import transforms
import torchvision
fake_dataset = torchvision.datasets.FakeData(
size=100,
image_size=(3, 256, 128),
num_classes=751,
transform=transforms.Compose([
transforms.Resize((384, 128),interpolation=3),
transforms.ToTensor(),
])
)
# for i, batches in enumerate(fake_dataset):
# print(i)
fake_loader = DataLoader(
fake_dataset,
batch_size=4,
shuffle=True
)
for i, batches in enumerate(fake_loader):
print(i)
但是,这并不是解决问题的方法,因为我们需要先写采样器,再去构建Dataloader,本末不可倒置。
可在dataset里新建一个变量items(例如一个dict),该变量的长度就是dataset中__len__()函数的返回值:
def __len__(self):
return len(self.items)
最后利用for i, item in self.data_source.items.items():访问新建的items变量,并获取每个变量的元素即可,这样一来__getitem__()函数也不用在采样器初始化时执行:
for i, item in self.data_source.items.items():
print(i)
是不是很方便呢~
相信还有更多的方法解决这个问题。总之,灵活地使用Pytorch中各种元件,对编程实现实验细节有很大的帮助~