dyld源码解读

前言

dyld全称the dynamic link editor,即动态链接器,其本质是Mach-O文件,他是专门用来加载动态库的库。源码可以从这里下载,本文采用的是| dyld-635.2 |
源码进行分析。dyld位于/usr/lib/dyld,可以从越狱机或者mac电脑中找到。以mac为例,终端执行如下命令:

cd /usr/lib/
file dyld

输出为:

dyld: Mach-O universal binary with 2 architectures: [x86_64:Mach-O 64-bit dynamic linker x86_64] [i386:Mach-O dynamic linker i386]
dyld (for architecture x86_64): Mach-O 64-bit dynamic linker x86_64
dyld (for architecture i386):   Mach-O dynamic linker i386

即,dyld是Mach-O类型的通用二进制文件,支持x86_64和i386两种架构。当然,iPhone真机对应的dyld支持的为arm系列架构。

  • otool简介
    otool是专门用来查看Mach-O类型文件的工具,终端输入otool可以看到很多用法:
$ otool
Usage: /Library/Developer/CommandLineTools/usr/bin/otool [-arch arch_type] [-fahlLDtdorSTMRIHGvVcXmqQjCP] [-mcpu=arg] [--version]  ...
    -f print the fat headers
    -a print the archive header
    -h print the mach header
    -l print the load commands
    -L print shared libraries used
    -D print shared library id name
    -t print the text section (disassemble with -v)
    -p   start dissassemble from routine name
    -s   print contents of section
    -d print the data section
    -o print the Objective-C segment
    -r print the relocation entries
    -S print the table of contents of a library (obsolete)
    -T print the table of contents of a dynamic shared library (obsolete)
    -M print the module table of a dynamic shared library (obsolete)
    -R print the reference table of a dynamic shared library (obsolete)
    -I print the indirect symbol table
    -H print the two-level hints table (obsolete)
    -G print the data in code table
    -v print verbosely (symbolically) when possible
    -V print disassembled operands symbolically
    -c print argument strings of a core file
    -X print no leading addresses or headers
    -m don't use archive(member) syntax
    -B force Thumb disassembly (ARM objects only)
    -q use llvm's disassembler (the default)
    -Q use otool(1)'s disassembler
    -mcpu=arg use `arg' as the cpu for disassembly
    -j print opcode bytes
    -P print the info plist section as strings
    -C print linker optimization hints
    --version print the version of /Library/Developer/CommandLineTools/usr/bin/otool
 
 

比如,可以通过-L来查看当前Mach-O所依赖的动态库。如,常用的gcd依赖以下这些动态库:

$ otool -L /usr/lib/system/libdispatch.dylib
/usr/lib/system/libdispatch.dylib:
    /usr/lib/system/libdispatch.dylib (compatibility version 1.0.0, current version 1008.250.7)
    /usr/lib/system/libsystem_darwin.dylib (compatibility version 1.0.0, current version 1.0.0)
    /usr/lib/system/libdyld.dylib (compatibility version 1.0.0, current version 655.1.1)
    /usr/lib/system/libcompiler_rt.dylib (compatibility version 1.0.0, current version 63.4.0)
    /usr/lib/system/libsystem_kernel.dylib (compatibility version 1.0.0, current version 4903.255.45)
    /usr/lib/system/libsystem_platform.dylib (compatibility version 1.0.0, current version 177.250.1)
    /usr/lib/system/libsystem_pthread.dylib (compatibility version 1.0.0, current version 330.250.2)
    /usr/lib/system/libsystem_malloc.dylib (compatibility version 1.0.0, current version 166.250.4)
    /usr/lib/system/libsystem_c.dylib (compatibility version 1.0.0, current version 1272.250.1)
    /usr/lib/system/libsystem_blocks.dylib (compatibility version 1.0.0, current version 73.0.0)
    /usr/lib/system/libunwind.dylib (compatibility version 1.0.0, current version 35.4.0)
    /usr/lib/libobjc.A.dylib (compatibility version 1.0.0, current version 228.0.0)

当然,也可以通过MachOView更加直观的查看相关信息

dyld源码解读_第1张图片
libdispatch.dylib

dyld加载

动态库的加载必然在main函数之前,而load方法的调用也在main之前,因此从这里入手。新建工程,打上符号断点[NSObject load],运行程序后如图所示:

符号断点

可见,load的加载是从_dyld_start这个函数开始的。_dyld_start对应汇编文件,内部调用dyldbootstrap::start,位于dyldInitialization.cpp中:

//
//  This is code to bootstrap dyld.  This work in normally done for a program by dyld and crt.
//  In dyld we have to do this manually.
//
uintptr_t start(const struct macho_header* appsMachHeader, int argc, const char* argv[], 
                intptr_t slide, const struct macho_header* dyldsMachHeader,
                uintptr_t* startGlue)
{
    // if kernel had to slide dyld, we need to fix up load sensitive locations
    // we have to do this before using any global variables
    slide = slideOfMainExecutable(dyldsMachHeader);
    bool shouldRebase = slide != 0;
#if __has_feature(ptrauth_calls)
    shouldRebase = true;
#endif
    if ( shouldRebase ) {
        rebaseDyld(dyldsMachHeader, slide);
    }

    // allow dyld to use mach messaging
    mach_init();

    // kernel sets up env pointer to be just past end of agv array
    const char** envp = &argv[argc+1];
    
    // kernel sets up apple pointer to be just past end of envp array
    const char** apple = envp;
    while(*apple != NULL) { ++apple; }
    ++apple;

    // set up random value for stack canary
    __guard_setup(apple);

#if DYLD_INITIALIZER_SUPPORT
    // run all C++ initializers inside dyld
    runDyldInitializers(dyldsMachHeader, slide, argc, argv, envp, apple);
#endif

    // now that we are done bootstrapping dyld, call dyld's main
    uintptr_t appsSlide = slideOfMainExecutable(appsMachHeader);
    return dyld::_main(appsMachHeader, appsSlide, argc, argv, envp, apple, startGlue);
}

流程很简单:获取dyld对应的slide->通过slide对dyld进行rebase->mach初始化->栈溢出保护->获取应用的slide(appsSlide)->调用dyld的main函数

slide与rebase

由于apple采用了ASLR(Address space layout randomization)技术,所以Mach-O每次加载到内存中的首地址是变化的,此时想找到代码在内存中对应的地址需要重定位rebase。rebase要用到slide值,那么slide如何计算?

static uintptr_t slideOfMainExecutable(const struct macho_header* mh)
{
    const uint32_t cmd_count = mh->ncmds;
    const struct load_command* const cmds = (struct load_command*)(((char*)mh)+sizeof(macho_header));
    const struct load_command* cmd = cmds;
    for (uint32_t i = 0; i < cmd_count; ++i) {
        if ( cmd->cmd == LC_SEGMENT_COMMAND ) {
            const struct macho_segment_command* segCmd = (struct macho_segment_command*)cmd;
            if ( (segCmd->fileoff == 0) && (segCmd->filesize != 0)) {
                return (uintptr_t)mh - segCmd->vmaddr;
            }
        }
        cmd = (const struct load_command*)(((char*)cmd)+cmd->cmdsize);
    }
    return 0;
}
intptr_t _dyld_get_image_vmaddr_slide(uint32_t imageIndex)
{
    log_apis("_dyld_get_image_vmaddr_slide(%d)\n", imageIndex);

    const mach_header* mh = gAllImages.imageLoadAddressByIndex(imageIndex);
    if ( mh != nullptr )
        return dyld3::_dyld_get_image_slide(mh);
    return 0;
}

intptr_t _dyld_get_image_slide(const mach_header* mh)
{
    log_apis("_dyld_get_image_slide(%p)\n", mh);

    const MachOLoaded* mf = (MachOLoaded*)mh;
    if ( !mf->hasMachOMagic() )
        return 0;

    return mf->getSlide();
}

intptr_t MachOLoaded::getSlide() const
{
    Diagnostics diag;
    __block intptr_t slide = 0;
    forEachLoadCommand(diag, ^(const load_command* cmd, bool& stop) {
        if ( cmd->cmd == LC_SEGMENT_64 ) {
            const segment_command_64* seg = (segment_command_64*)cmd;
            if ( strcmp(seg->segname, "__TEXT") == 0 ) {
                slide = (uintptr_t)(((uint64_t)this) - seg->vmaddr);
                stop = true;
            }
        }
        else if ( cmd->cmd == LC_SEGMENT ) {
            const segment_command* seg = (segment_command*)cmd;
            if ( strcmp(seg->segname, "__TEXT") == 0 ) {
                slide = (uintptr_t)(((uint64_t)this) - seg->vmaddr);
                stop = true;
            }
        }
    });
    diag.assertNoError();   // any malformations in the file should have been caught by earlier validate() call
    return slide;
}

由于应用本身的Mach-O及dyld的特殊性,这两个采用的是slideOfMainExecutable的方式获取slide,而动态库加载采用的是_dyld_get_image_vmaddr_slide的方式获取slide。

对比后不难发现:
slide = mh首地址 - load_command中__TEXT段中vmaddr的值(slideOfMainExecutable方式中以(segCmd->fileoff == 0) && (segCmd->filesize != 0)为条件,对于应用本身Mach-O及dyld,此时也是对应__TEXT段)

简单验证一下,以应用Mach-O为例:

dyld源码解读_第2张图片
VM Address
dyld源码解读_第3张图片
image list

可以看到,Mach-O的地址为0x101321000(16进制),VM Address的地址为4294967296(十进制,对应16进制为0x100000000)。当然,也可以通过命令行直接获取slide的值,这里为了方便理解,采用手动计算

image list -o -f
dyld源码解读_第4张图片
Calculation

1、用Mach-O的内存地址减去对应虚拟地址,得到20058112(十进制)为slide的值
2、获取viewDidLoad函数在当前内存中的地址
3、用viewDidLoad内存地址减去slide得到Mach-O中对应的虚拟地址
4、将虚拟地址转化为16进制

dyld源码解读_第5张图片
viewDidLoad

可以看到,最终计算出的值0x100001750与在Mach-O中看到的值一致

dyld::_main

ASLR有个基本认知后,接着看dyld中的main干了什么。由于内部代码过长,此处先贴出流程再逐步分析:设置运行环境->加载共享缓存->实例化主程序->加载插入的动态库->链接主程序->链接插入的动态库->执行弱符号绑定->执行初始化方法->查找入口点并返回

  • 设置运行环境
uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide, 
        int argc, const char* argv[], const char* envp[], const char* apple[], 
        uintptr_t* startGlue)
{
  ...
   // Grab the cdHash of the main executable from the environment
    uint8_t mainExecutableCDHashBuffer[20];
    const uint8_t* mainExecutableCDHash = nullptr;
    if ( hexToBytes(_simple_getenv(apple, "executable_cdhash"), 40, mainExecutableCDHashBuffer) )
                //  获取主程序hash
        mainExecutableCDHash = mainExecutableCDHashBuffer;

    // Trace dyld's load
        // 告知kernel,dyld已加载
    notifyKernelAboutImage((macho_header*)&__dso_handle, _simple_getenv(apple, "dyld_file"));
#if !TARGET_IPHONE_SIMULATOR
    // Trace the main executable's load
        // 告知kernel,主程序Mach-O已加载
    notifyKernelAboutImage(mainExecutableMH, _simple_getenv(apple, "executable_file"));
#endif

    uintptr_t result = 0;
    sMainExecutableMachHeader = mainExecutableMH;
    sMainExecutableSlide = mainExecutableSlide;
#if __MAC_OS_X_VERSION_MIN_REQUIRED
    // if this is host dyld, check to see if iOS simulator is being run
        // 获取dyld路径
    const char* rootPath = _simple_getenv(envp, "DYLD_ROOT_PATH");
    if ( (rootPath != NULL) ) {
        // look to see if simulator has its own dyld
        char simDyldPath[PATH_MAX]; 
        strlcpy(simDyldPath, rootPath, PATH_MAX);
        strlcat(simDyldPath, "/usr/lib/dyld_sim", PATH_MAX);
        int fd = my_open(simDyldPath, O_RDONLY, 0);
        if ( fd != -1 ) {
                        // 如果是模拟器,并且正确加载`dyld_sim`,则直接返回主程序地址
            const char* errMessage = useSimulatorDyld(fd, mainExecutableMH, simDyldPath, argc, argv, envp, apple, startGlue, &result);
            if ( errMessage != NULL )
                halt(errMessage);
            return result;
        }
    }
#endif

    CRSetCrashLogMessage("dyld: launch started");
        // 设置上下文
    setContext(mainExecutableMH, argc, argv, envp, apple);

    // Pickup the pointer to the exec path.
        // 获取主程序路径
    sExecPath = _simple_getenv(apple, "executable_path");

    //  Remove interim apple[0] transition code from dyld
    if (!sExecPath) sExecPath = apple[0];
    
        // 获取Mach-O绝对路径
    if ( sExecPath[0] != '/' ) {
        // have relative path, use cwd to make absolute
        char cwdbuff[MAXPATHLEN];
        if ( getcwd(cwdbuff, MAXPATHLEN) != NULL ) {
            // maybe use static buffer to avoid calling malloc so early...
            char* s = new char[strlen(cwdbuff) + strlen(sExecPath) + 2];
            strcpy(s, cwdbuff);
            strcat(s, "/");
            strcat(s, sExecPath);
            sExecPath = s;
        }
    }

    // Remember short name of process for later logging
        //  设置进程名称
    sExecShortName = ::strrchr(sExecPath, '/');
    if ( sExecShortName != NULL )
        ++sExecShortName;
    else
        sExecShortName = sExecPath;
    // 配置进程受限模式
    configureProcessRestrictions(mainExecutableMH);

//  再次检测/设置上下文环境
#if __MAC_OS_X_VERSION_MIN_REQUIRED
    if ( !gLinkContext.allowEnvVarsPrint && !gLinkContext.allowEnvVarsPath && !gLinkContext.allowEnvVarsSharedCache ) {
        pruneEnvironmentVariables(envp, &apple);
        // set again because envp and apple may have changed or moved
        setContext(mainExecutableMH, argc, argv, envp, apple);
    }
    else
#endif
    {
        checkEnvironmentVariables(envp);
        defaultUninitializedFallbackPaths(envp);
    }

...
        
        // 如果设置了DYLD_PRINT_OPTS,则打印参数
    if ( sEnv.DYLD_PRINT_OPTS )
        printOptions(argv);
        // 如果设置了DYLD_PRINT_ENV,则打印环境变量
    if ( sEnv.DYLD_PRINT_ENV ) 
        printEnvironmentVariables(envp);
        // 获取主程序架构信息
    getHostInfo(mainExecutableMH, mainExecutableSlide);
}

通过源码可以看到,如果是模拟器运行的程序,其实是通过dyld_sim来进行后续加载工作的,与正常真机加载流程略有不同,具体实现在useSimulatorDyld这个函数中,本文不做进一步解析。不难看出,模拟器比真机多加载一个dyld_sim

dyld源码解读_第6张图片
模拟器
dyld源码解读_第7张图片
真机

这里还有一个知识点,环境变量DYLD_PRINT_OPTSDYLD_PRINT_ENV

dyld源码解读_第8张图片
processDyldEnvironmentVariable

添加这两个环境变量,对应的字段会被设置为true,可以看到,这里并不需要设置value

dyld源码解读_第9张图片
arguments & environment

输出如下:


dyld源码解读_第10张图片
输出

但是并非每个环境变量都不需要配置value,如:

void processDyldEnvironmentVariable(const char* key, const char* value, const char* mainExecutableDir)
{
    if ( strcmp(key, "DYLD_FRAMEWORK_PATH") == 0 ) {
        appendParsedColonList(value, mainExecutableDir, &sEnv.DYLD_FRAMEWORK_PATH);
    }
    else if ( strcmp(key, "DYLD_FALLBACK_FRAMEWORK_PATH") == 0 ) {
        appendParsedColonList(value, mainExecutableDir, &sEnv.DYLD_FALLBACK_FRAMEWORK_PATH);
    }
    else if ( strcmp(key, "DYLD_LIBRARY_PATH") == 0 ) {
        appendParsedColonList(value, mainExecutableDir, &sEnv.DYLD_LIBRARY_PATH);
    }
    else if ( strcmp(key, "DYLD_FALLBACK_LIBRARY_PATH") == 0 ) {
        appendParsedColonList(value, mainExecutableDir, &sEnv.DYLD_FALLBACK_LIBRARY_PATH);
    }
...
}

这些环境变量是需要配置value的,更多可配置的环境变量可从processDyldEnvironmentVariable函数中找到

  • 加载共享缓存
uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide, 
        int argc, const char* argv[], const char* envp[], const char* apple[], 
        uintptr_t* startGlue)
{
...
    // load shared cache
        // 检测共享缓存是否可用
checkSharedRegionDisable((dyld3::MachOLoaded*)mainExecutableMH, mainExecutableSlide);
#if TARGET_IPHONE_SIMULATOR
    //  until  is fixed
    gLinkContext.sharedRegionMode = ImageLoader::kUsePrivateSharedRegion;
    // 
#endif
    if ( gLinkContext.sharedRegionMode != ImageLoader::kDontUseSharedRegion ) {
                // 映射共享缓存到共享区
        mapSharedCache();
    }

    ...                     

#if !TARGET_IPHONE_SIMULATOR
#ifdef WAIT_FOR_SYSTEM_ORDER_HANDSHAKE
    //  Add gating mechanism to dyld support system order file generation process
    WAIT_FOR_SYSTEM_ORDER_HANDSHAKE(dyld::gProcessInfo->systemOrderFlag);
#endif
#endif

    try {
        // add dyld itself to UUID list
                // 添加dyld的UUID到共享缓存UUID列表中
        addDyldImageToUUIDList();

        ...
        }
#endif
...
}

这部分流程也很简单:检测共享缓存是否可用->如果可用,映射共享缓存到共享区->添加dyld的UUID到缓存列表

其中,检测共享缓存是否可用checkSharedRegionDisable这个函数中有两句注释:

// if main executable has segments that overlap the shared region, then disable using the shared region
// iOS cannot run without shared region

意思是:如果主程序Mach-O有segments与共享区重叠,那么共享区不可用。并且,iOS不开启共享区无法运行。

看下是如何检测这两者是否重叠的:

...
// 调用
 mainExecutableMH->intersectsRange(SHARED_REGION_BASE, SHARED_REGION_SIZE) 
...

bool MachOLoaded::intersectsRange(uintptr_t start, uintptr_t length) const
{
    __block bool result = false;
    uintptr_t slide = getSlide();
    forEachSegment(^(const SegmentInfo& info, bool& stop) {
        if ( (info.vmAddr+info.vmSize+slide >= start) && (info.vmAddr+slide < start+length) )
            result = true;
    });
    return result;
}

如果主程序segment中的虚拟地址+虚拟地址+偏移量 >= 共享区起始地址并且主程序segment中的虚拟地址 + 偏移量 < 共享区终止地址,那么认为主程序Mach-O有segments与共享区重叠,此时共享区不可用,从而动态库缓存不可用

疑问:可以看到这段检测代码在满足重叠条件后,并没有将stop设为true,所以源码其实是检测Mach-O最后一段segment与共享区是否重叠,但之前的每个segment都计算了一次。这里是否在满足重叠条件后将stop设为true跳出循环,或者只检测最后一段segment都比原方法更好?

加载共享缓存最核心的步骤在mapSharedCache中:

static void mapSharedCache()
{
    dyld3::SharedCacheOptions opts;
    opts.cacheDirOverride   = sSharedCacheOverrideDir;
    opts.forcePrivate       = (gLinkContext.sharedRegionMode == ImageLoader::kUsePrivateSharedRegion);


#if __x86_64__ && !TARGET_IPHONE_SIMULATOR
    opts.useHaswell         = sHaswell;
#else
    opts.useHaswell         = false;
#endif
    opts.verbose            = gLinkContext.verboseMapping;
    loadDyldCache(opts, &sSharedCacheLoadInfo);

    // update global state
    if ( sSharedCacheLoadInfo.loadAddress != nullptr ) {
        gLinkContext.dyldCache                              = sSharedCacheLoadInfo.loadAddress;
        dyld::gProcessInfo->processDetachedFromSharedRegion = opts.forcePrivate;
        dyld::gProcessInfo->sharedCacheSlide                = sSharedCacheLoadInfo.slide;
        dyld::gProcessInfo->sharedCacheBaseAddress          = (unsigned long)sSharedCacheLoadInfo.loadAddress;
        sSharedCacheLoadInfo.loadAddress->getUUID(dyld::gProcessInfo->sharedCacheUUID);
        dyld3::kdebug_trace_dyld_image(DBG_DYLD_UUID_SHARED_CACHE_A, (const uuid_t *)&dyld::gProcessInfo->sharedCacheUUID[0], {0,0}, {{ 0, 0 }}, (const mach_header *)sSharedCacheLoadInfo.loadAddress);
    }

//#if __IPHONE_OS_VERSION_MIN_REQUIRED && !TARGET_IPHONE_SIMULATOR
// RAM disk booting does not have shared cache yet
// Don't make lack of a shared cache fatal in that case
//  if ( sSharedCacheLoadInfo.loadAddress == nullptr ) {
//      if ( sSharedCacheLoadInfo.errorMessage != nullptr )
//          halt(sSharedCacheLoadInfo.errorMessage);
//      else
//          halt("error loading dyld shared cache");
//  }
//#endif
}

bool loadDyldCache(const SharedCacheOptions& options, SharedCacheLoadInfo* results)
{
    results->loadAddress        = 0;
    results->slide              = 0;
    results->errorMessage       = nullptr;

#if TARGET_IPHONE_SIMULATOR
    // simulator only supports mmap()ing cache privately into process
    return mapCachePrivate(options, results);
#else
    if ( options.forcePrivate ) {
        // mmap cache into this process only
        return mapCachePrivate(options, results);
    }
    else {
        // fast path: when cache is already mapped into shared region
        bool hasError = false;
        if ( reuseExistingCache(options, results) ) {
            hasError = (results->errorMessage != nullptr);
        } else {
            // slow path: this is first process to load cache
            hasError = mapCacheSystemWide(options, results);
        }
        return hasError;
    }
#endif
}

可以看到,加载缓存分三种情况:
1、仅加载到当前进程,通过mapCachePrivate加载并返回错误信息
2、已经加载过的,仅获取加载错误信息并返回
3、未加载过的,通过mapCacheSystemWide加载并返回错误信息

options.forcePrivate为true或者模拟器运行时,仅加载到当前进程。而options.forcePrivate的值是这么定义的:

opts.forcePrivate = (gLinkContext.sharedRegionMode == ImageLoader::kUsePrivateSharedRegion)

enum SharedRegionMode { kUseSharedRegion, kUsePrivateSharedRegion, kDontUseSharedRegion, kSharedRegionIsSharedCache };

gLinkContext.sharedRegionMode就是之前检测共享区是否可用的标识值,可以看到默认值为kUseSharedRegion

  • 实例化主程序
uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide, 
        int argc, const char* argv[], const char* envp[], const char* apple[], 
        uintptr_t* startGlue)
{
...
  try {
  ...
        CRSetCrashLogMessage(sLoadingCrashMessage);
        // instantiate ImageLoader for main executable
                // 实例化主程序
        sMainExecutable = instantiateFromLoadedImage(mainExecutableMH, mainExecutableSlide, sExecPath);
        gLinkContext.mainExecutable = sMainExecutable;
        gLinkContext.mainExecutableCodeSigned = hasCodeSignatureLoadCommand(mainExecutableMH);

#if TARGET_IPHONE_SIMULATOR
        // check main executable is not too new for this OS
                // 检测主程序是否支持当前设备版本
        {
            if ( ! isSimulatorBinary((uint8_t*)mainExecutableMH, sExecPath) ) {
                throwf("program was built for a platform that is not supported by this runtime");
            }
            uint32_t mainMinOS = sMainExecutable->minOSVersion();

            // dyld is always built for the current OS, so we can get the current OS version
            // from the load command in dyld itself.
            uint32_t dyldMinOS = ImageLoaderMachO::minOSVersion((const mach_header*)&__dso_handle);
            if ( mainMinOS > dyldMinOS ) {
    #if TARGET_OS_WATCH
                throwf("app was built for watchOS %d.%d which is newer than this simulator %d.%d",
                        mainMinOS >> 16, ((mainMinOS >> 8) & 0xFF),
                        dyldMinOS >> 16, ((dyldMinOS >> 8) & 0xFF));
    #elif TARGET_OS_TV
                throwf("app was built for tvOS %d.%d which is newer than this simulator %d.%d",
                        mainMinOS >> 16, ((mainMinOS >> 8) & 0xFF),
                        dyldMinOS >> 16, ((dyldMinOS >> 8) & 0xFF));
    #else
                throwf("app was built for iOS %d.%d which is newer than this simulator %d.%d",
                        mainMinOS >> 16, ((mainMinOS >> 8) & 0xFF),
                        dyldMinOS >> 16, ((dyldMinOS >> 8) & 0xFF));
    #endif
            }
        }
  }
#endif

    ...
        // dyld_all_image_infos image list does not contain dyld
        // add it as dyldPath field in dyld_all_image_infos
        // for simulator, dyld_sim is in image list, need host dyld added
#if TARGET_IPHONE_SIMULATOR
        // get path of host dyld from table of syscall vectors in host dyld
        void* addressInDyld = gSyscallHelpers;
#else
        // get path of dyld itself
        void*  addressInDyld = (void*)&__dso_handle;
#endif
              // 获取dyld路径并与gProcessInfo->dyldPath对比
              // 如果不同将获取到的路径复制给gProcessInfo->dyldPath
        char dyldPathBuffer[MAXPATHLEN+1];
        int len = proc_regionfilename(getpid(), (uint64_t)(long)addressInDyld, dyldPathBuffer, MAXPATHLEN);
        if ( len > 0 ) {
            dyldPathBuffer[len] = '\0'; // proc_regionfilename() does not zero terminate returned string
            if ( strcmp(dyldPathBuffer, gProcessInfo->dyldPath) != 0 )
                gProcessInfo->dyldPath = strdup(dyldPathBuffer);
        }
...

}

这一步流程为:实例化主程序->检测主程序是否支持当前设备版本->检测进程信息中dyld路径是否与dyld路径相符,若不符则重新赋值

源码中有这样一段注释:

// dyld_all_image_infos image list does not contain dyld
// add it as dyldPath field in dyld_all_image_infos
// for simulator, dyld_sim is in image list, need host dyld added

就是说,dyld加载的image_infos并不包含dyld本身,他被放到dyld_all_image_infosdyldPath字段中去了。而对于模拟器,dyld加载的image_infos是包含dyld_sim的。

dyld_all_image_infos是个结构体,同样分为32位及64位两个版本,分别对应dyld_all_image_infos_32dyld_all_image_infos_64,由于获取dyld_all_image_infos需要用到一些未开源信息,这里为了方便,从侧面验证一下这条注释信息:

- (void)viewDidLoad {
    [super viewDidLoad];
    
    for (uint32_t i = 0; i < _dyld_image_count(); ++i) {
        NSLog(@"%s", _dyld_get_image_name(i));
    }
}
dyld源码解读_第11张图片
真机
dyld源码解读_第12张图片
模拟器

可以看到,真机打印出的加载image中并没有dyld,第0个image是主程序。同样,模拟器对应打印的image也没有dyld,第0个image是dyld_sim,第一个image才是主程序

回到最核心的instantiateFromLoadedImage函数,实例化主程序:

// The kernel maps in main executable before dyld gets control.  We need to 
// make an ImageLoader* for the already mapped in main executable.
static ImageLoaderMachO* instantiateFromLoadedImage(const macho_header* mh, uintptr_t slide, const char* path)
{
    // try mach-o loader
    if ( isCompatibleMachO((const uint8_t*)mh, path) ) {
        ImageLoader* image = ImageLoaderMachO::instantiateMainExecutable(mh, slide, path, gLinkContext);
        addImage(image);
        return (ImageLoaderMachO*)image;
    }
    
    throw "main executable not a known format";
}

从注释及源码可以看到,kernel在dyld之前已经加载了主程序Mach-O,dyld判断Mach-O的兼容性后,实例化成ImageLoader加载到内存中交给dyld管理

// create image for main executable
ImageLoader* ImageLoaderMachO::instantiateMainExecutable(const macho_header* mh, uintptr_t slide, const char* path, const LinkContext& context)
{
    //dyld::log("ImageLoader=%ld, ImageLoaderMachO=%ld, ImageLoaderMachOClassic=%ld, ImageLoaderMachOCompressed=%ld\n",
    //  sizeof(ImageLoader), sizeof(ImageLoaderMachO), sizeof(ImageLoaderMachOClassic), sizeof(ImageLoaderMachOCompressed));
    bool compressed;
    unsigned int segCount;
    unsigned int libCount;
    const linkedit_data_command* codeSigCmd;
    const encryption_info_command* encryptCmd;
    sniffLoadCommands(mh, path, false, &compressed, &segCount, &libCount, context, &codeSigCmd, &encryptCmd);
    // instantiate concrete class based on content of load commands
    if ( compressed ) 
        return ImageLoaderMachOCompressed::instantiateMainExecutable(mh, slide, path, segCount, libCount, context);
    else
#if SUPPORT_CLASSIC_MACHO
        return ImageLoaderMachOClassic::instantiateMainExecutable(mh, slide, path, segCount, libCount, context);
#else
        throw "missing LC_DYLD_INFO load command";
#endif
}

instantiateMainExecutable内部调用sniffLoadCommands,这个函数会对主程序Mach-O进行一系列的校验。从函数名也可以看出,这里的校验并不包括对主程序Mach-O的解密操作,这个操作是由xnu完成的。

可以看到,当compressed为true时,通过ImageLoaderMachOCompressed::instantiateMainExecutable初始化,否则通过ImageLoaderMachOClassic::instantiateMainExecutable初始化。其实两者内部的逻辑相同,只是返回类型一个是ImageLoaderMachOCompressed一个是ImageLoaderMachOClassic而已。

以ImageLoaderMachOCompressed为例:

// create image for main executable
ImageLoaderMachOCompressed* ImageLoaderMachOCompressed::instantiateMainExecutable(const macho_header* mh, uintptr_t slide, const char* path, 
                                                                        unsigned int segCount, unsigned int libCount, const LinkContext& context)
{
        // 初始化image
    ImageLoaderMachOCompressed* image = ImageLoaderMachOCompressed::instantiateStart(mh, path, segCount, libCount);

    // set slide for PIE programs
        // 设置image偏移量
    image->setSlide(slide);

    // for PIE record end of program, to know where to start loading dylibs
    if ( slide != 0 )
                // 设置动态库起始地址
        fgNextPIEDylibAddress = (uintptr_t)image->getEnd();

        // 禁用段覆盖检测
    image->disableCoverageCheck();
        // 结束image上下文
    image->instantiateFinish(context);
        // 设置image加载状态为dyld_image_state_mapped
    image->setMapped(context);

    if ( context.verboseMapping ) {
        dyld::log("dyld: Main executable mapped %s\n", path);
        for(unsigned int i=0, e=image->segmentCount(); i < e; ++i) {
            const char* name = image->segName(i);
            if ( (strcmp(name, "__PAGEZERO") == 0) || (strcmp(name, "__UNIXSTACK") == 0)  )
                dyld::log("%18s at 0x%08lX->0x%08lX\n", name, image->segPreferredLoadAddress(i), image->segPreferredLoadAddress(i)+image->segSize(i));
            else
                dyld::log("%18s at 0x%08lX->0x%08lX\n", name, image->segActualLoadAddress(i), image->segActualEndAddress(i));
        }
    }

    return image;
}

此处流程为:初始化image->设置image偏移量->设置动态库起始地址->禁用段覆盖检测->结束image上下文->设置image加载状态为dyld_image_state_mapped,并调用notifySingle进行处理

其中,结束image上下文内部做了:解析loadCmds、设置动态库连接信息、设置符号表相关信息等

  • 加载插入的动态库
uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide, 
        int argc, const char* argv[], const char* envp[], const char* apple[], 
        uintptr_t* startGlue)
{
...
        // load any inserted libraries
                // 插入动态库
        if  ( sEnv.DYLD_INSERT_LIBRARIES != NULL ) {
            for (const char* const* lib = sEnv.DYLD_INSERT_LIBRARIES; *lib != NULL; ++lib) 
                loadInsertedDylib(*lib);
        }
        // record count of inserted libraries so that a flat search will look at 
        // inserted libraries, then main, then others.
                // 记录插入的动态库个数
        sInsertedDylibCount = sAllImages.size()-1;
...
}

如果配置了DYLD_INSERT_LIBRARIES环境变量,通过loadInsertedDylib插入配置的动态库。对于越狱插件而言,其实就是添加DYLD_INSERT_LIBRARIES这个环境变量达到加载插件的目的

static void loadInsertedDylib(const char* path)
{
    ImageLoader* image = NULL;
    unsigned cacheIndex;
    try {
        LoadContext context;
        context.useSearchPaths      = false;
        context.useFallbackPaths    = false;
        context.useLdLibraryPath    = false;
        context.implicitRPath       = false;
        context.matchByInstallName  = false;
        context.dontLoad            = false;
        context.mustBeBundle        = false;
        context.mustBeDylib         = true;
        context.canBePIE            = false;
        context.enforceIOSMac       = true;
        context.origin              = NULL; // can't use @loader_path with DYLD_INSERT_LIBRARIES
        context.rpath               = NULL;
        image = load(path, context, cacheIndex);
    }
    catch (const char* msg) {
        if ( gLinkContext.allowInsertFailures )
            dyld::log("dyld: warning: could not load inserted library '%s' into hardened process because %s\n", path, msg);
        else
            halt(dyld::mkstringf("could not load inserted library '%s' because %s\n", path, msg));
    }
    catch (...) {
        halt(dyld::mkstringf("could not load inserted library '%s'\n", path));
    }
}

内部构建context后调用load函数生成image

ImageLoader* load(const char* path, const LoadContext& context, unsigned& cacheIndex)
{

...
    // try all path permutations and check against existing loaded images

    ImageLoader* image = loadPhase0(path, orgPath, context, cacheIndex, NULL);
    if ( image != NULL ) {
        CRSetCrashLogMessage2(NULL);
        return image;
    }

    // try all path permutations and try open() until first success
    std::vector exceptions;
    image = loadPhase0(path, orgPath, context, cacheIndex, &exceptions);
#if !TARGET_IPHONE_SIMULATOR
    //  support symlinks on disk to a path in dyld shared cache
    if ( image == NULL)
        image = loadPhase2cache(path, orgPath, context, cacheIndex, &exceptions);
#endif
    CRSetCrashLogMessage2(NULL);
    if ( image != NULL ) {
        //  leak in dyld during dlopen when using DYLD_ variables
        for (std::vector::iterator it = exceptions.begin(); it != exceptions.end(); ++it) {
            free((void*)(*it));
        }
        // if loaded image is not from cache, but original path is in cache
        // set gSharedCacheOverridden flag to disable some ObjC optimizations
        if ( !gSharedCacheOverridden && !image->inSharedCache() && image->isDylib() && cacheablePath(path) && inSharedCache(path) ) {
            gSharedCacheOverridden = true;
        }
        return image;
    }
...
}

可以看到,先调用了loadPhase0查找image,如果没找到再调用loadPhase2cache查找image。其实内部有一整套loadPhase0~loadPhase6的流程来查找及加载image,如果在共享缓存中找到则直接调用instantiateFromCache 实例化image,否则通过loadPhase5open打开文件并调用loadPhase6,内部通过instantiateFromFile实例化image,最后再调用checkandAddImage将image加载进内存

  • 链接主程序
uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide, 
        int argc, const char* argv[], const char* envp[], const char* apple[], 
        uintptr_t* startGlue)
{
...
        // link main executable
        gLinkContext.linkingMainExecutable = true;
#if SUPPORT_ACCELERATE_TABLES
        if ( mainExcutableAlreadyRebased ) {
            // previous link() on main executable has already adjusted its internal pointers for ASLR
            // work around that by rebasing by inverse amount
            sMainExecutable->rebase(gLinkContext, -mainExecutableSlide);
        }
#endif
                // 链接主程序
        link(sMainExecutable, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);
        sMainExecutable->setNeverUnloadRecursive();
        if ( sMainExecutable->forceFlat() ) {
            gLinkContext.bindFlat = true;
            gLinkContext.prebindUsage = ImageLoader::kUseNoPrebinding;
        }
...
}

可以看到,主程序的链接是通过link这个函数完成的:

void ImageLoader::link(const LinkContext& context, bool forceLazysBound, bool preflightOnly, bool neverUnload, const RPathChain& loaderRPaths, const char* imagePath)
{
    //dyld::log("ImageLoader::link(%s) refCount=%d, neverUnload=%d\n", imagePath, fDlopenReferenceCount, fNeverUnload);
    
    // clear error strings
    (*context.setErrorStrings)(0, NULL, NULL, NULL);

    uint64_t t0 = mach_absolute_time();
        // 递归加载主程序依赖的库
    this->recursiveLoadLibraries(context, preflightOnly, loaderRPaths, imagePath);
    context.notifyBatch(dyld_image_state_dependents_mapped, preflightOnly);

    // we only do the loading step for preflights
    if ( preflightOnly )
        return;

    uint64_t t1 = mach_absolute_time();
        // 清空image层级关系
    context.clearAllDepths();
        // 递归更新image层级关系
    this->recursiveUpdateDepth(context.imageCount());

    __block uint64_t t2, t3, t4, t5;
    {
        dyld3::ScopedTimer(DBG_DYLD_TIMING_APPLY_FIXUPS, 0, 0, 0);
        t2 = mach_absolute_time();
                // 递归进行rebase
        this->recursiveRebase(context);
        context.notifyBatch(dyld_image_state_rebased, false);

        t3 = mach_absolute_time();
        if ( !context.linkingMainExecutable )
                        // 递归绑定符号表
            this->recursiveBindWithAccounting(context, forceLazysBound, neverUnload);

        t4 = mach_absolute_time();
        if ( !context.linkingMainExecutable )
                        // 绑定弱符号表
            this->weakBind(context);
        t5 = mach_absolute_time();
    }

    if ( !context.linkingMainExecutable )
        context.notifyBatch(dyld_image_state_bound, false);
    uint64_t t6 = mach_absolute_time(); 

    std::vector dofs;
        // 递归获取dof信息
    this->recursiveGetDOFSections(context, dofs);
        // 注册dofs信息
    context.registerDOFs(dofs);
    uint64_t t7 = mach_absolute_time(); 

    // interpose any dynamically loaded images
    if ( !context.linkingMainExecutable && (fgInterposingTuples.size() != 0) ) {
        dyld3::ScopedTimer timer(DBG_DYLD_TIMING_APPLY_INTERPOSING, 0, 0, 0);
                // 递归应用插入的动态库
        this->recursiveApplyInterposing(context);
    }

    // clear error strings
    (*context.setErrorStrings)(0, NULL, NULL, NULL);

    fgTotalLoadLibrariesTime += t1 - t0;
    fgTotalRebaseTime += t3 - t2;
    fgTotalBindTime += t4 - t3;
    fgTotalWeakBindTime += t5 - t4;
    fgTotalDOF += t7 - t6;
    
    // done with initial dylib loads
    fgNextPIEDylibAddress = 0;
}

内部加载动态库、rebase、绑定符号表、注册dofs信息等,同时还计算各步骤的耗时。如果想获取这些耗时,只需要在环境变量中添加DYLD_PRINT_STATISTICS就可以了,同样,这个环境变量也不需要value

  • 链接插入的动态库
uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide, 
        int argc, const char* argv[], const char* envp[], const char* apple[], 
        uintptr_t* startGlue)
{
...
        // link any inserted libraries
        // do this after linking main executable so that any dylibs pulled in by inserted 
        // dylibs (e.g. libSystem) will not be in front of dylibs the program uses
        if ( sInsertedDylibCount > 0 ) {
            for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
                ImageLoader* image = sAllImages[i+1];
                link(image, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);
                image->setNeverUnloadRecursive();
            }
            // only INSERTED libraries can interpose
            // register interposing info after all inserted libraries are bound so chaining works
            for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
                ImageLoader* image = sAllImages[i+1];
                image->registerInterposing(gLinkContext);
            }
        }
...
    // apply interposing to initial set of images
        for(int i=0; i < sImageRoots.size(); ++i) {
            sImageRoots[i]->applyInterposing(gLinkContext);
        }
        ImageLoader::applyInterposingToDyldCache(gLinkContext);
        gLinkContext.linkingMainExecutable = false;

        // Bind and notify for the main executable now that interposing has been registered
        uint64_t bindMainExecutableStartTime = mach_absolute_time();
        sMainExecutable->recursiveBindWithAccounting(gLinkContext, sEnv.DYLD_BIND_AT_LAUNCH, true);
        uint64_t bindMainExecutableEndTime = mach_absolute_time();
        ImageLoaderMachO::fgTotalBindTime += bindMainExecutableEndTime - bindMainExecutableStartTime;
        gLinkContext.notifyBatch(dyld_image_state_bound, false);

        // Bind and notify for the inserted images now interposing has been registered
        if ( sInsertedDylibCount > 0 ) {
            for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
                ImageLoader* image = sAllImages[i+1];
                image->recursiveBind(gLinkContext, sEnv.DYLD_BIND_AT_LAUNCH, true);
            }
        }
...
}

这里很简单,从加载的images中取出image,重复前面的link操作进行连接。registerInterposing内部会加载loadCmds并查找__interpose__DATA段,读取段信息保存到fgInterposingTuples中,然后调用applyInterposing,内部调用recursiveApplyInterposing,通过这个函数调用到doInterpose,同样以ImageLoaderMachOCompressed为例:

void ImageLoaderMachOCompressed::doInterpose(const LinkContext& context)
{
    if ( context.verboseInterposing )
        dyld::log("dyld: interposing %lu tuples onto image: %s\n", fgInterposingTuples.size(), this->getPath());

    // update prebound symbols
    eachBind(context, ^(const LinkContext& ctx, ImageLoaderMachOCompressed* image,
                        uintptr_t addr, uint8_t type, const char* symbolName,
                        uint8_t symbolFlags, intptr_t addend, long libraryOrdinal,
                        ExtraBindData *extraBindData,
                        const char* msg, LastLookup* last, bool runResolver) {
        return ImageLoaderMachOCompressed::interposeAt(ctx, image, addr, type, symbolName, symbolFlags,
                                                       addend, libraryOrdinal, extraBindData,
                                                       msg, last, runResolver);
    });
    eachLazyBind(context, ^(const LinkContext& ctx, ImageLoaderMachOCompressed* image,
                            uintptr_t addr, uint8_t type, const char* symbolName,
                            uint8_t symbolFlags, intptr_t addend, long libraryOrdinal,
                            ExtraBindData *extraBindData,
                            const char* msg, LastLookup* last, bool runResolver) {
        return ImageLoaderMachOCompressed::interposeAt(ctx, image, addr, type, symbolName, symbolFlags,
                                                       addend, libraryOrdinal, extraBindData,
                                                       msg, last, runResolver);
    });
}

这里eachBind与eachLazyBind都调用了interposeAt,interposeAt通过interposedAddress在上文提到的fgInterposingTuples中找到需要替换的符号地址进行替换

  • 弱符号绑定
uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide, 
        int argc, const char* argv[], const char* envp[], const char* apple[], 
        uintptr_t* startGlue)
{
...
        //  do weak binding only after all inserted images linked
        sMainExecutable->weakBind(gLinkContext);
...
}

void ImageLoader::weakBind(const LinkContext& context)
{
...
// get set of ImageLoaders that participate in coalecsing
    ImageLoader* imagesNeedingCoalescing[fgImagesRequiringCoalescing];
    unsigned imageIndexes[fgImagesRequiringCoalescing];
// 合并所有动态库的弱符号到列表中
    int count = context.getCoalescedImages(imagesNeedingCoalescing, imageIndexes);

    // count how many have not already had weakbinding done
    int countNotYetWeakBound = 0;
    int countOfImagesWithWeakDefinitionsNotInSharedCache = 0;
    for(int i=0; i < count; ++i) {
        if ( ! imagesNeedingCoalescing[i]->weakSymbolsBound(imageIndexes[i]) )
                        // 获取未进行绑定的弱符号的个数
            ++countNotYetWeakBound;
        if ( ! imagesNeedingCoalescing[i]->inSharedCache() )
                    // 获取在共享缓存中已绑定的弱符号个数
            ++countOfImagesWithWeakDefinitionsNotInSharedCache;
    }

    // don't need to do any coalescing if only one image has overrides, or all have already been done
    if ( (countOfImagesWithWeakDefinitionsNotInSharedCache > 0) && (countNotYetWeakBound > 0) ) {
        // make symbol iterators for each
        ImageLoader::CoalIterator iterators[count];
        ImageLoader::CoalIterator* sortedIts[count];
        for(int i=0; i < count; ++i) {
                        // 对需要绑定的弱符号排序
            imagesNeedingCoalescing[i]->initializeCoalIterator(iterators[i], i, imageIndexes[i]);
            sortedIts[i] = &iterators[i];
            if ( context.verboseWeakBind )
                dyld::log("dyld: weak bind load order %d/%d for %s\n", i, count, imagesNeedingCoalescing[i]->getIndexedPath(imageIndexes[i]));
        }

    // walk all symbols keeping iterators in sync by 
        // only ever incrementing the iterator with the lowest symbol 
        int doneCount = 0;
        while ( doneCount != count ) {
            //for(int i=0; i < count; ++i)
            //  dyld::log("sym[%d]=%s ", sortedIts[i]->loadOrder, sortedIts[i]->symbolName);
            //dyld::log("\n");
            // increment iterator with lowest symbol
                        // 计算弱符号偏移量及大小,绑定弱符号
            if ( sortedIts[0]->image->incrementCoalIterator(*sortedIts[0]) )
                ++doneCount; 
...
        }
}

主要流程:合并所有动态库的弱符号到列表中->对需要绑定的弱符号排序->计算弱符号偏移量及大小,绑定弱符号

  • 初始化主程序
uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide, 
        int argc, const char* argv[], const char* envp[], const char* apple[], 
        uintptr_t* startGlue)
{
...
 
        CRSetCrashLogMessage("dyld: launch, running initializers");
    #if SUPPORT_OLD_CRT_INITIALIZATION
        // Old way is to run initializers via a callback from crt1.o
        if ( ! gRunInitializersOldWay ) 
            initializeMainExecutable(); 
    #else
        // run all initializers
        initializeMainExecutable(); 
    #endif

        // notify any montoring proccesses that this process is about to enter main()
        if (dyld3::kdebug_trace_dyld_enabled(DBG_DYLD_TIMING_LAUNCH_EXECUTABLE)) {
            dyld3::kdebug_trace_dyld_duration_end(launchTraceID, DBG_DYLD_TIMING_LAUNCH_EXECUTABLE, 0, 0, 2);
        }
        notifyMonitoringDyldMain();

...
}

void initializeMainExecutable()
{
    // record that we've reached this step
    gLinkContext.startedInitializingMainExecutable = true;

    // run initialzers for any inserted dylibs
    ImageLoader::InitializerTimingList initializerTimes[allImagesCount()];
    initializerTimes[0].count = 0;
    const size_t rootCount = sImageRoots.size();
    if ( rootCount > 1 ) {
        for(size_t i=1; i < rootCount; ++i) {
                        // 初始化动态库
            sImageRoots[i]->runInitializers(gLinkContext, initializerTimes[0]);
        }
    }
    
    // run initializers for main executable and everything it brings up 
        // 初始化主程序
    sMainExecutable->runInitializers(gLinkContext, initializerTimes[0]);
    
    // register cxa_atexit() handler to run static terminators in all loaded images when this process exits
    if ( gLibSystemHelpers != NULL ) 
        (*gLibSystemHelpers->cxa_atexit)(&runAllStaticTerminators, NULL, NULL);

    // dump info if requested
    if ( sEnv.DYLD_PRINT_STATISTICS )
        ImageLoader::printStatistics((unsigned int)allImagesCount(), initializerTimes[0]);
    if ( sEnv.DYLD_PRINT_STATISTICS_DETAILS )
        ImageLoaderMachO::printStatisticsDetails((unsigned int)allImagesCount(), initializerTimes[0]);
}

先初始化动态库,然后初始化主程序。上文提到的DYLD_PRINT_STATISTICS环境变量在这里也出现了,除此之外还有个detail版的环境变量DYLD_PRINT_STATISTICS_DETAILS

void ImageLoader::runInitializers(const LinkContext& context, InitializerTimingList& timingInfo)
{
    uint64_t t1 = mach_absolute_time();
    mach_port_t thisThread = mach_thread_self();
    ImageLoader::UninitedUpwards up;
    up.count = 1;
    up.images[0] = this;
    processInitializers(context, thisThread, timingInfo, up);
    context.notifyBatch(dyld_image_state_initialized, false);
    mach_port_deallocate(mach_task_self(), thisThread);
    uint64_t t2 = mach_absolute_time();
    fgTotalInitTime += (t2 - t1);
}

void ImageLoader::processInitializers(const LinkContext& context, mach_port_t thisThread,
                                     InitializerTimingList& timingInfo, ImageLoader::UninitedUpwards& images)
{
    uint32_t maxImageCount = context.imageCount()+2;
    ImageLoader::UninitedUpwards upsBuffer[maxImageCount];
    ImageLoader::UninitedUpwards& ups = upsBuffer[0];
    ups.count = 0;
    // Calling recursive init on all images in images list, building a new list of
    // uninitialized upward dependencies.
    for (uintptr_t i=0; i < images.count; ++i) {
        images.images[i]->recursiveInitialization(context, thisThread, images.images[i]->getPath(), timingInfo, ups);
    }
    // If any upward dependencies remain, init them.
    if ( ups.count > 0 )
        processInitializers(context, thisThread, timingInfo, ups);
}

动态库和主程序的初始化是调用runInitializers,内部通过processInitializers调用recursiveInitialization递归初始化当前image锁依赖的库

void ImageLoader::recursiveInitialization(const LinkContext& context, mach_port_t this_thread, const char* pathToInitialize,
                                          InitializerTimingList& timingInfo, UninitedUpwards& uninitUps)
{
    recursive_lock lock_info(this_thread);
    recursiveSpinLock(lock_info);

    if ( fState < dyld_image_state_dependents_initialized-1 ) {
        uint8_t oldState = fState;
        // break cycles
        fState = dyld_image_state_dependents_initialized-1;
        try {
            // initialize lower level libraries first
            for(unsigned int i=0; i < libraryCount(); ++i) {
                ImageLoader* dependentImage = libImage(i);
                if ( dependentImage != NULL ) {
                    // don't try to initialize stuff "above" me yet
                    if ( libIsUpward(i) ) {
                        uninitUps.images[uninitUps.count] = dependentImage;
                        uninitUps.count++;
                    }
                    else if ( dependentImage->fDepth >= fDepth ) {
                        dependentImage->recursiveInitialization(context, this_thread, libPath(i), timingInfo, uninitUps);
                    }
                }
            }
            
            // record termination order
            if ( this->needsTermination() )
                context.terminationRecorder(this);
            
            // let objc know we are about to initialize this image
            uint64_t t1 = mach_absolute_time();
            fState = dyld_image_state_dependents_initialized;
            oldState = fState;
            context.notifySingle(dyld_image_state_dependents_initialized, this, &timingInfo);
            
            // initialize this image
            bool hasInitializers = this->doInitialization(context);

            // let anyone know we finished initializing this image
            fState = dyld_image_state_initialized;
            oldState = fState;
            context.notifySingle(dyld_image_state_initialized, this, NULL);
            
            if ( hasInitializers ) {
                uint64_t t2 = mach_absolute_time();
                timingInfo.addTime(this->getShortName(), t2-t1);
            }
        }
        catch (const char* msg) {
            // this image is not initialized
            fState = oldState;
            recursiveSpinUnLock();
            throw;
        }
    }
    
    recursiveSpinUnLock();
}

递归初始化很简单没啥好说的,注意内部有个调用context.notifySingle(dyld_image_state_initialized, this, NULL),其实每次image状态改变都会调用notifySingle这个方法:

static void notifySingle(dyld_image_states state, const ImageLoader* image, ImageLoader::InitializerTimingList* timingInfo)
{
    //dyld::log("notifySingle(state=%d, image=%s)\n", state, image->getPath());
    std::vector* handlers = stateToHandlers(state, sSingleHandlers);
    if ( handlers != NULL ) {
        dyld_image_info info;
        info.imageLoadAddress   = image->machHeader();
        info.imageFilePath      = image->getRealPath();
        info.imageFileModDate   = image->lastModified();
        for (std::vector::iterator it = handlers->begin(); it != handlers->end(); ++it) {
            const char* result = (*it)(state, 1, &info);
            if ( (result != NULL) && (state == dyld_image_state_mapped) ) {
                //fprintf(stderr, "  image rejected by handler=%p\n", *it);
                // make copy of thrown string so that later catch clauses can free it
                const char* str = strdup(result);
                throw str;
            }
        }
    }
    if ( state == dyld_image_state_mapped ) {
        //  Save load addr + UUID for images from outside the shared cache
        if ( !image->inSharedCache() ) {
            dyld_uuid_info info;
            if ( image->getUUID(info.imageUUID) ) {
                info.imageLoadAddress = image->machHeader();
                addNonSharedCacheImageUUID(info);
            }
        }
    }
    if ( (state == dyld_image_state_dependents_initialized) && (sNotifyObjCInit != NULL) && image->notifyObjC() ) {
        uint64_t t0 = mach_absolute_time();
        dyld3::ScopedTimer timer(DBG_DYLD_TIMING_OBJC_INIT, (uint64_t)image->machHeader(), 0, 0);
        (*sNotifyObjCInit)(image->getRealPath(), image->machHeader());
        uint64_t t1 = mach_absolute_time();
        uint64_t t2 = mach_absolute_time();
        uint64_t timeInObjC = t1-t0;
        uint64_t emptyTime = (t2-t1)*100;
        if ( (timeInObjC > emptyTime) && (timingInfo != NULL) ) {
            timingInfo->addTime(image->getShortName(), timeInObjC);
        }
    }
    // mach message csdlc about dynamically unloaded images
    if ( image->addFuncNotified() && (state == dyld_image_state_terminated) ) {
        notifyKernel(*image, false);
        const struct mach_header* loadAddress[] = { image->machHeader() };
        const char* loadPath[] = { image->getPath() };
        notifyMonitoringDyld(true, 1, loadAddress, loadPath);
    }
}

可见,当state == dyld_image_state_mapped时,将image对应的UUID存起来,当state == dyld_image_state_dependents_initialized并且有sNotifyObjCInit回调时调用sNotifyObjCInit函数。

搜索回调函数赋值入口:

void registerObjCNotifiers(_dyld_objc_notify_mapped mapped, _dyld_objc_notify_init init, _dyld_objc_notify_unmapped unmapped)
{
    // record functions to call
    sNotifyObjCMapped   = mapped;
    sNotifyObjCInit     = init;
    sNotifyObjCUnmapped = unmapped;

...
}

void _dyld_objc_notify_register(_dyld_objc_notify_mapped    mapped,
                                _dyld_objc_notify_init      init,
                                _dyld_objc_notify_unmapped  unmapped)
{
    dyld::registerObjCNotifiers(mapped, init, unmapped);
}

发现是通过_dyld_objc_notify_register这个函数注册回调的,回到文章开头符号断点[NSObject load]截图中的堆栈:

* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.2
  * frame #0: 0x000000010944f3b1 libobjc.A.dylib`+[NSObject load]
    frame #1: 0x000000010943d317 libobjc.A.dylib`call_load_methods + 691
    frame #2: 0x000000010943e814 libobjc.A.dylib`load_images + 77
    frame #3: 0x0000000108b73b97 dyld_sim`dyld::registerObjCNotifiers(void (*)(unsigned int, char const* const*, mach_header const* const*), void (*)(char const*, mach_header const*), void (*)(char const*, mach_header const*)) + 260
    frame #4: 0x000000010b779bf3 libdyld.dylib`_dyld_objc_notify_register + 113
    frame #5: 0x000000010944ca12 libobjc.A.dylib`_objc_init + 115
    frame #6: 0x000000010b7015c0 libdispatch.dylib`_os_object_init + 13
    frame #7: 0x000000010b70f4e5 libdispatch.dylib`libdispatch_init + 300
    frame #8: 0x0000000109e05a78 libSystem.B.dylib`libSystem_initializer + 164
    frame #9: 0x0000000108b82b96 dyld_sim`ImageLoaderMachO::doModInitFunctions(ImageLoader::LinkContext const&) + 506
    frame #10: 0x0000000108b82d9c dyld_sim`ImageLoaderMachO::doInitialization(ImageLoader::LinkContext const&) + 40
    frame #11: 0x0000000108b7e3fc dyld_sim`ImageLoader::recursiveInitialization(ImageLoader::LinkContext const&, unsigned int, char const*, ImageLoader::InitializerTimingList&, ImageLoader::UninitedUpwards&) + 324
    frame #12: 0x0000000108b7e392 dyld_sim`ImageLoader::recursiveInitialization(ImageLoader::LinkContext const&, unsigned int, char const*, ImageLoader::InitializerTimingList&, ImageLoader::UninitedUpwards&) + 218
    frame #13: 0x0000000108b7d5d3 dyld_sim`ImageLoader::processInitializers(ImageLoader::LinkContext const&, unsigned int, ImageLoader::InitializerTimingList&, ImageLoader::UninitedUpwards&) + 133
    frame #14: 0x0000000108b7d665 dyld_sim`ImageLoader::runInitializers(ImageLoader::LinkContext const&, ImageLoader::InitializerTimingList&) + 73
    frame #15: 0x0000000108b71333 dyld_sim`dyld::initializeMainExecutable() + 129
    frame #16: 0x0000000108b75434 dyld_sim`dyld::_main(macho_header const*, unsigned long, int, char const**, char const**, char const**, unsigned long*) + 4384
    frame #17: 0x0000000108b70630 dyld_sim`start_sim + 136
    frame #18: 0x00000001155c1234 dyld`dyld::useSimulatorDyld(int, macho_header const*, char const*, int, char const**, char const**, char const**, unsigned long*, unsigned long*) + 2238
    frame #19: 0x00000001155bf0ce dyld`dyld::_main(macho_header const*, unsigned long, int, char const**, char const**, char const**, unsigned long*) + 522
    frame #20: 0x00000001155ba503 dyld`dyldbootstrap::start(macho_header const*, int, char const**, long, macho_header const*, unsigned long*) + 1167
    frame #21: 0x00000001155ba036 dyld`_dyld_start + 54

可以看到,_dyld_objc_notify_register是在初始化libobjc.A.dylib这个动态库时调用的,然后_objc_init内部调用了load_images,进而调用call_load_methods,从而调用各个类中的load方法,感兴趣可以下载源码查看具体流程

notifySingle调用完毕后,开始真正初始化工作doInitialization

bool ImageLoaderMachO::doInitialization(const LinkContext& context)
{
    CRSetCrashLogMessage2(this->getPath());

    // mach-o has -init and static initializers
    doImageInit(context);
    doModInitFunctions(context);
    
    CRSetCrashLogMessage2(NULL);
    
    return (fHasDashInit || fHasInitializers);
}

doImageInit执行LC_ROUTINES_COMMAND segment中保存的函数,doModInitFunctions执行__DATA,__mod_init_func section中保存的函数。这个section中保存的是C++的构造函数及带有attribute((constructor))的C函数,简单验证一下:

class Test {
public:
    Test();
};

Test::Test(){
    NSLog(@"%s", __func__);
}

Test test;

__attribute__((constructor)) void testConstructor() {
    NSLog(@"%s", __func__);
}
__mod_init_func

同样,通过MachOView也可以看到:


dyld源码解读_第13张图片
MachOView

显然,__mod_init_func中的函数在类对应的load方法之后调用。

  • 查找主程序入口函数指针并返回
uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide, 
        int argc, const char* argv[], const char* envp[], const char* apple[], 
        uintptr_t* startGlue)
{
... 
        // find entry point for main executable
        result = (uintptr_t)sMainExecutable->getEntryFromLC_MAIN();
        if ( result != 0 ) {
            // main executable uses LC_MAIN, we need to use helper in libdyld to call into main()
            if ( (gLibSystemHelpers != NULL) && (gLibSystemHelpers->version >= 9) )
                *startGlue = (uintptr_t)gLibSystemHelpers->startGlueToCallExit;
            else
                halt("libdyld.dylib support not present for LC_MAIN");
        }
        else {
            // main executable uses LC_UNIXTHREAD, dyld needs to let "start" in program set up for main()
            result = (uintptr_t)sMainExecutable->getEntryFromLC_UNIXTHREAD();
            *startGlue = 0;
        }
#if __has_feature(ptrauth_calls)
        // start() calls the result pointer as a function pointer so we need to sign it.
        result = (uintptr_t)__builtin_ptrauth_sign_unauthenticated((void*)result, 0, 0);
#endif
    }
    catch(const char* message) {
        syncAllImages();
        halt(message);
    }
    catch(...) {
        dyld::log("dyld: launch failed\n");
    }

    CRSetCrashLogMessage("dyld2 mode");

    if (sSkipMain) {
        if (dyld3::kdebug_trace_dyld_enabled(DBG_DYLD_TIMING_LAUNCH_EXECUTABLE)) {
            dyld3::kdebug_trace_dyld_duration_end(launchTraceID, DBG_DYLD_TIMING_LAUNCH_EXECUTABLE, 0, 0, 2);
        }
        result = (uintptr_t)&fake_main;
        *startGlue = (uintptr_t)gLibSystemHelpers->startGlueToCallExit;
    }
    
    return result;
}

此处两步走:调用getEntryFromLC_MAIN获取入口,如果没有入口则调用getEntryFromLC_UNIXTHREAD获取入口。这个入口就是主程序main函数的地址

void* ImageLoaderMachO::getEntryFromLC_MAIN() const
{
    const uint32_t cmd_count = ((macho_header*)fMachOData)->ncmds;
    const struct load_command* const cmds = (struct load_command*)&fMachOData[sizeof(macho_header)];
    const struct load_command* cmd = cmds;
    for (uint32_t i = 0; i < cmd_count; ++i) {
        if ( cmd->cmd == LC_MAIN ) {
            entry_point_command* mainCmd = (entry_point_command*)cmd;
            void* entry = (void*)(mainCmd->entryoff + (char*)fMachOData);
            //  verify entry point is in image
            if ( this->containsAddress(entry) )
                return entry;
            else
                throw "LC_MAIN entryoff is out of range";
        }
        cmd = (const struct load_command*)(((char*)cmd)+cmd->cmdsize);
    }
    return NULL;
}

void* ImageLoaderMachO::getEntryFromLC_UNIXTHREAD() const
{
    const uint32_t cmd_count = ((macho_header*)fMachOData)->ncmds;
    const struct load_command* const cmds = (struct load_command*)&fMachOData[sizeof(macho_header)];
    const struct load_command* cmd = cmds;
    for (uint32_t i = 0; i < cmd_count; ++i) {
        if ( cmd->cmd == LC_UNIXTHREAD ) {
    #if __i386__
            const i386_thread_state_t* registers = (i386_thread_state_t*)(((char*)cmd) + 16);
            void* entry = (void*)(registers->eip + fSlide);
            //  verify entry point is in image
            if ( this->containsAddress(entry) )
                return entry;
    #elif __x86_64__
            const x86_thread_state64_t* registers = (x86_thread_state64_t*)(((char*)cmd) + 16);
            void* entry = (void*)(registers->rip + fSlide);
            //  verify entry point is in image
            if ( this->containsAddress(entry) )
                return entry;
    #elif __arm64__ && !__arm64e__
            // temp support until  is fixed
            const uint64_t* regs64 = (uint64_t*)(((char*)cmd) + 16);
            void* entry = (void*)(regs64[32] + fSlide); // arm_thread_state64_t.__pc
            //  verify entry point is in image
            if ( this->containsAddress(entry) )
                return entry;
    #endif
        }
        cmd = (const struct load_command*)(((char*)cmd)+cmd->cmdsize);
    }
    throw "no valid entry point";
}

可以看到,入口是在load_command的LC_MAIN或者LC_UNIXTHREAD

dyld源码解读_第14张图片
LC_MAIN

受能力所限,可能存在部分理解偏差,欢迎指正。

Have fun!

你可能感兴趣的:(dyld源码解读)