- 【深度学习实战】行人检测追踪与双向流量计数系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、双向计数、行人检测追踪、过线计数
阿_旭
AI应用软件开发实战深度学习实战深度学习python行人检测行人追踪过线计数
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- 【计算机视觉前沿研究 热点 顶会】ECCV 2024中目标检测有关的论文
平安顺遂事事如意
顶刊顶会论文合集计算机视觉目标检测人工智能3d目标跟踪
整值训练和尖峰驱动推理脉冲神经网络用于高性能和节能的目标检测与人工神经网络(ANN)相比,脑激励的脉冲神经网络(SNN)具有生物合理性和低功耗的优势。由于SNN的性能较差,目前的应用仅限于简单的分类任务。在这项工作中,我们专注于弥合人工神经网络和神经网络在目标检测方面的性能差距。我们的设计围绕着网络架构和尖峰神经元。当行人检测遇到多模态学习时:通才模型和基准数据集近年来,利用不同传感器模态(如RG
- 【CV论文精读】Adaptive Fusion of Multi-Scale YOLO for Pedestrian Detection基于多尺度自适应融合YOLO的行人检测
量子-Alex
CV知识学习和论文阅读YOLO计算机视觉人工智能
AdaptiveFusionofMulti-ScaleYOLOforPedestrianDetection0.论文摘要和作者信息摘要虽然行人检测技术在不断改进,但由于不同规模的行人和遮挡行人模式的不确定性和多样性,行人检测仍然具有挑战性。本研究遵循单次目标检测的通用框架,提出了一种分而治之的方法来解决上述问题。该模型引入了一个分割函数,可以将一幅图像中没有重叠的行人分割成两个子图像。通过使用网络架
- HOG特征
ce0b74704937
HOG特征是在文章《HistogramsofOrientedGradientsforHumanDetection》中提出,看文章标题可知,该文章是为了行人检测提出的,不过后来也用于其它方向,比如特征点检测等。该文中行人检测大概分为以下几步:输入图像(行人的图像)采用Gamma矫正法对输入图像进行颜色空间的标准化;目的是调节图像的对比度,降低图像局部的阴影和光照所造成的影响,同时可以抑制噪声。(原文
- 【CV论文精读】Pedestrian Detection Based on YOLO Network Model 基于YOLO的行人检测
量子-Alex
CV知识学习和论文阅读YOLO深度学习计算机视觉
【CV论文精读】PedestrianDetectionBasedonYOLONetworkModel0.论文摘要和作者信息摘要——经过深度网络后,会有一些行人信息的丢失,会造成梯度的消失,造成行人检测不准确。本文改进了YOLO算法的网络结构,提出了一种新的网络结构YOLO-R。首先,在原有YOLO网络的基础上增加了三个直通层。直通层由路由层和重组层组成。其作用是将浅层行人特征连接到深层行人特征,并
- 跨模态行人重识别综述 - 计算机视觉
小小猿D
笔记深度学习
跨模态行人重识别综述-计算机视觉0引言近年来,随着智能监控领域的不断发展,单纯凭借传统的人力已经很难在对复杂的监控场景做出完善详尽的处理。作为一项在大型非重叠视角多摄像机网络获取到的海量视频画面序列里找到目标行人的任务,行人重识别(PersonRe-Identification)可以被看作是多摄像头的行人检索问题。它建立在行人检测的基础之上,捕捉获取同一目标个体在不同非重叠摄像头中分布位置信息,推
- PaddleDetection学习2——使用Paddle-Lite在 Android 上实现行人检测
waf13916
paddleandroid
使用Paddle-Lite在Android上实现行人检测1.环境准备2.准备模型2.1下载模型2.2模型优化3.部署模型3.1目标检测C++代码Pipeline.hPipeline.cpppreprocess_op.hpreprocess_op.cc3.2修改配置文件3.4部署模型到移动端1.环境准备参考前一篇
- YOLOV5s行人识别改进 引入CoT模块及SIOU损失函数
deleteeee
YOLO人工智能计算机视觉神经网络python目标检测视觉检测
1.项目背景及意义近年来,深度学习算法不断取得了突破性进展,这也推动了人工智能技术的不断进步。机器视觉作为其中的重要一环,在不同领域也焕发出了强烈的生机。行人目标检测是机器视觉的一项重要课题,早就已经引起了国内外学者广泛的研究。在现实生活中,行人检测在车站、商场等场所的人流量检测、汽车的自动驾驶技术、智能交通、健身房辅助教学、电影拍摄中动作捕捉等多种场景中被广泛应用。然而,行人检测通常伴随着遮挡,
- 计算机设计大赛 交通目标检测-行人车辆检测流量计数 - 计算机设计大赛
iuerfee
python
文章目录0前言1\.目标检测概况1.1什么是目标检测?1.2发展阶段2\.行人检测2.1行人检测简介2.2行人检测技术难点2.3行人检测实现效果2.4关键代码-训练过程最后0前言优质竞赛项目系列,今天要分享的是毕业设计交通目标检测-行人车辆检测流量计数该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分更多资料,项目分
- YOLOV5单目测距+车辆检测+车道线检测+行人检测(教程-代码)
毕设阿力
YOLO目标跟踪人工智能目标检测
YOLOv5是一种高效的目标检测算法,结合其在单目测距、车辆检测、车道线检测和行人检测等领域的应用,可以实现多个重要任务的精确识别和定位。首先,YOLOv5可以用于单目测距。通过分析图像中的目标位置和尺寸信息,结合相机参数和几何关系,可以推断出目标与相机之间的距离。这对于智能驾驶、机器人导航等领域至关重要,可以帮助车辆或机器人感知周围环境的远近,并做出相应的决策。其次,YOLOv5可以用于车辆检测
- 大创项目推荐 目标检测-行人车辆检测流量计数
laafeer
python
文章目录前言1\.目标检测概况1.1什么是目标检测?1.2发展阶段2\.行人检测2.1行人检测简介2.2行人检测技术难点2.3行人检测实现效果2.4关键代码-训练过程最后前言优质竞赛项目系列,今天要分享的是行人车辆目标检测计数系统该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate1.目
- 使用飞浆训练目标检测模型
无忧秘书智脑
深度学习机器学习人工智能
参考链接:PP-PicoDet算法训练行人检测模型-CSDN博客文章浏览阅读306次。PP-PicoDet模型特点:方案选择PP-PicoDet轻量化模型,主要看中PP-PicoDet体积小、速度快、精度较高的优势,非常适合本项目的部署环境和性能要求。同时,飞桨提供的预训练模型也可以最大程度上提升模型的收敛速度和精度。https://blog.csdn.net/qq_45437316/articl
- LNTON人形检测、行人检测工具,支持图片、RTSP实时流、mp4文件中的行人或者人形检测,实用工具,亲测可用!
xiejiashu
视频人工智能行人检测人形检测人物监测检测人的算法羚通算法
简介LNTON_PID是一个行人检测工具,能够对图像、视频、文件夹中的多个文件或RTSP实时流进行行人检测,并支持自定义输出结果和行人区域位置的保存。该工具提供了灵活的参数配置选项以适应各种应用场景。快速开始-命令行参数格式(Linux/Unix环境)./pid_tools_gensamplesINPUT_PATHOUT_RESULT_DIR[DEFAULT:results]OUT_PATCH_D
- 智慧工地下烟火检测报警系统 建筑工地火灾监控系统
豌豆云
烟火自动识别预警和监管系统
智慧工地下烟火检测报警系统建筑工地火灾监控系统基于智能识别的人员密集场所安防预警系统或许能够帮到你。该系统利用监控系统结合模式识别,对现场视频数据进行深度挖掘,突破基于复杂背景下的烟火识别、动态场景下非配合人脸识别以及基于行人检测的越界识别等关键技术。烟感防灾报警系统,在施工现场加工区、材料堆放区、易发生火灾隐患区域安装烟感探测器,监测现场烟雾浓度。探测器内置芯片可实时上传监测数据至“智慧工地监管
- 目标检测数据集 - 人脸检测数据集下载「包含VOC、COCO、YOLO三种格式」
极智视界
AI训练数据集工作室目标检测YOLO人脸检测人脸检测数据集深度学习人工智能数据集
数据集介绍:行人检测数据集,真实场景高质量图片数据,涉及场景丰富,比如校园行人、街景行人、道路行人、遮挡行人、严重遮挡行人数据;适用实际项目应用:公共场所监控场景下行人检测项目,以及作为监控场景通用行人检测数据集场景数据的补充;标注说明:采用labelimg标注软件进行标注,标注质量高,提供VOC(xml)、COCO(json)、YOLO(txt)三种常见目标检测数据集格式,可以直接用于如YOLO
- 目标检测数据集 - 行人检测数据集下载「包含VOC、COCO、YOLO三种格式」
极智视界
AI训练数据集工作室目标检测YOLO行人检测行人检测数据集AI训练数据集深度学习labelimg
数据集介绍:行人检测数据集,真实场景高质量图片数据,涉及场景丰富,比如校园行人、街景行人、道路行人、遮挡行人、严重遮挡行人数据;适用实际项目应用:公共场所监控场景下行人检测项目,以及作为监控场景通用行人检测数据集场景数据的补充;标注说明:采用labelimg标注软件进行标注,标注质量高,提供VOC(xml)、COCO(json)、YOLO(txt)三种常见目标检测数据集格式,可以直接用于如YOLO
- 基于YOLOv5的行人检测系统
TechMasterPlus
深度学习#目标检测游戏音视频深度学习人工智能
若需要完整工程源代码,请私信作者目标检测在计算机视觉领域中的重要性,特别是在人群流量监测方面的应用。其中,YOLO(YouOnlyLookOnce)系列算法在目标检测领域取得了显著的进展,从YOLO到YOLOv5的发展历程表明其在算法性能上的不断优化。文中提到了基于YOLOv5设计的人口密度检测系统,该系统通过深度学习算法对人群进行检测和计数,主要应用于商场、路口等需要控制人流的场所。系统通过YO
- 无人驾驶卡尔曼滤波
meteor,across T sky
Apollo机器学习人工智能
无人驾驶卡尔曼滤波(行人检测)xk=axk−1+wkx_k=ax_{k-1}+w_kxk=axk−1+wkwkw_kwk:过程噪声状态估计估计飞行器状态(高度)xk=zk−vkx_k=z_k-v_kxk=zk−vk卡尔曼滤波通过同时考虑上一状态值和当前的测量值来获得对当前状态值的估计,对状态xxx的估计:x^\hat{x}x^x^k=x^k−1+gk(zk−x^k−1)\hat{x}_k=\hat
- 大创项目推荐 深度学习实现行人重识别 - python opencv yolo Reid
laafeer
python
文章目录0前言1课题背景2效果展示3行人检测4行人重识别5其他工具6最后0前言优质竞赛项目系列,今天要分享的是**基于深度学习的行人重识别算法研究与实现**该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:5分更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate
- 目标检测数据集 - 夜间行人检测数据集下载「包含VOC、COCO、YOLO三种格式」
极智视界
AI训练数据集工作室目标检测YOLO人工智能夜间行人检测低光行人检测遮挡行人检测行人检测
数据集介绍:夜间、低光行人检测数据集,真实场景高质量图片数据,涉及场景丰富,比如夜间街景行人、夜间道路行人、夜间遮挡行人、夜间严重遮挡行人数据;适用实际项目应用:公共场所监控场景下夜间行人检测项目,以及作为监控场景通用行人检测数据集夜间场景数据的补充;标注说明:采用labelimg标注软件进行标注,标注质量高,提供VOC(xml)、COCO(json)、YOLO(txt)三种常见目标检测数据集格式
- 基于yolov2深度学习网络的车辆行人检测算法matlab仿真
简简单单做算法
MATLAB算法开发#深度学习YOLO深度学习人工智能yolov2车辆行人检测
目录1.算法运行效果图预览2.算法运行软件版本3.部分核心程序4.算法理论概述5.算法完整程序工程1.算法运行效果图预览2.算法运行软件版本MATLAB2022a3.部分核心程序..........................................................loadyolov2.mat%加载训练好的目标检测器img_size=[224,224];imgPath=
- C# OpenCvSharp DNN FreeYOLO 密集行人检测
天天代码码天天
C#人工智能实践dnn人工智能神经网络YOLO目标检测计算机视觉c#
目录效果模型信息项目代码下载C#OpenCvSharpDNNFreeYOLO密集行人检测效果模型信息Inputs-------------------------name:inputtensor:Float[1,3,192,320]---------------------------------------------------------------Outputs--------------
- 一些想法:关于行人检测与重识别
baidu_huihui
人工智能计算机视觉
本文主要是介绍我们录用于ECCV'18的一个工作:PersonSearchviaAMask-guidedTwo-streamCNNModel.这篇文章着眼于PersonSearch这个任务,即同时考虑行人检测(PedestrianDetection)与行人重识别(PersonRe-identification),简单探讨了一下行人检测与行人重识别这两个子任务之间的关联性,并尝试利用全景图像中的背景
- 智能交通技术与数据集大观:揭秘趋动云的无尽能量,引领AI发展的GPU算力及相关资源
virtaitech
人工智能gpu算力
智能交通是一种先进的交通系统,其核心目标在于通过实时数据的采集、分析以及智能决策,全面提升城市交通的效率、安全性和便捷性。该系统涵盖多项关键技术,包括行人检测、车辆检测、智能交通信号控制、智能导航和路径规划、以及安全监控等。行人检测:智能交通系统利用计算机视觉技术,通过摄像头、激光雷达等传感器对行人进行实时监测和识别。深度学习算法在处理多姿态和遮挡等复杂场景时,能够高效地检测行人的存在、位置和运动
- YOLO算法改进7【中阶改进篇】:主干网络C3替换为轻量化网络MobileNetV3
梦在黎明破晓时啊
YOLOV5中阶改进篇YOLO
解决问题:YOLOv5主干特征提取网络采用C3结构,带来较大的参数量,检测速度较慢,应用受限,在某些真实的应用场景如移动或者嵌入式设备,如此大而复杂的模型时难以被应用的。首先是模型过于庞大,面临着内存不足的问题,其次这些场景要求低延迟,或者说响应速度要快,想象一下自动驾驶汽车的行人检测系统如果速度很慢会发生什么可怕的事情。所以,研究小而高效的CNN模型在这些场景至关重要,至少目前是这样,尽管未来硬
- Deep learning-based small object detection: A survey(2023)
怎么全是重名
论文笔记深度学习目标检测人工智能
文章目录AbstractIntroductionContributionGenericSODalgorithms提高输入特征的分辨率(MostImportant)Methods尺度感知训练Methods融合上下文信息Methods数据增强Methods其他策略Methods关键的SOD任务小人脸检测Methods小型行人检测Methods航拍图像中的SODMethodsEvaluationofSO
- 36从传统算法到深度学习:目标检测入门实战 --行人检测
Jachin111
行人检测基本流程在实验1到实验3中我们分别学习了滑动窗口、图像金字塔、方向梯度直方图。本节实验我们将结合这些方法来构建一个传统的行人检测算法。简单来说行人检测就是在提供的图像中,我们想要计算机分辨出哪些是人并且用矩形框标记出人出现在图片中的哪些位置。下图左上角图片中有一个人,如果我们想要用传统的目标检测方法检测到这个人的话,一般分为下面几个步骤。使用图像金字塔将图片按一定缩放比例生成不同尺寸图片(
- 深度学习模型压缩与加速:深度压缩技术
RRRRRoyal
深度学习人工智能
深度学习模型压缩与加速:深度压缩技术引言深度学习已广泛应用于移动应用和实时检测任务,例如在自动驾驶车辆中的行人检测。在这些应用中,对于推理速度和模型大小有着极高的要求。深度压缩(DeepCompression)技术旨在减小深度学习模型的大小并加速模型推理,特别适用于对延迟敏感的应用场景。下面我们将详细介绍深度压缩技术及其在实际硬件上的性能。模型压缩与量化深度压缩技术通过权重剪枝、量化等方法来减少模
- 分类(四)—— 支持向量机
shi_jiaye
python机器学习与数据挖掘机器学习人工智能python
主要内容分类概述决策树归纳K近邻算法支持向量机朴素贝叶斯分类模型评估与选择组合分类小结四、支持向量机支持向量机(SupportVetorMachine,SVM)由Vapnik等人于1995年首先提出,在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并推广到人脸识别、行人检测和文本分类等其他机器学习问题中。SVM建立在统计学习理论的VC维理论和结构风险最小原理基础上,根据有限的样本信息在模
- 基于YOLOv8深度学习的高精度车辆行人检测与计数系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
阿_旭
深度学习实战AI应用软件开发实战计算机视觉YOLO深度学习python车辆行人检测目标检测
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- Dom
周华华
JavaScripthtml
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 【Spark九十六】RDD API之combineByKey
bit1129
spark
1. combineByKey函数的运行机制
RDD提供了很多针对元素类型为(K,V)的API,这些API封装在PairRDDFunctions类中,通过Scala隐式转换使用。这些API实现上是借助于combineByKey实现的。combineByKey函数本身也是RDD开放给Spark开发人员使用的API之一
首先看一下combineByKey的方法说明:
- msyql设置密码报错:ERROR 1372 (HY000): 解决方法详解
daizj
mysql设置密码
MySql给用户设置权限同时指定访问密码时,会提示如下错误:
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number;
问题原因:你输入的密码是明文。不允许这么输入。
解决办法:用select password('你想输入的密码');查询出你的密码对应的字符串,
然后
- 路漫漫其修远兮 吾将上下而求索
周凡杨
学习 思索
王国维在他的《人间词话》中曾经概括了为学的三种境界古今之成大事业、大学问者,罔不经过三种之境界。“昨夜西风凋碧树。独上高楼,望尽天涯路。”此第一境界也。“衣带渐宽终不悔,为伊消得人憔悴。”此第二境界也。“众里寻他千百度,蓦然回首,那人却在灯火阑珊处。”此第三境界也。学习技术,这也是你必须经历的三种境界。第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。这里,注
- Hadoop(二)对话单的操作
朱辉辉33
hadoop
Debug:
1、
A = LOAD '/user/hue/task.txt' USING PigStorage(' ')
AS (col1,col2,col3);
DUMP A;
//输出结果前几行示例:
(>ggsnPDPRecord(21),,)
(-->recordType(0),,)
(-->networkInitiation(1),,)
- web报表工具FineReport常用函数的用法总结(日期和时间函数)
老A不折腾
finereport报表工具web开发
web报表工具FineReport常用函数的用法总结(日期和时间函数)
说明:凡函数中以日期作为参数因子的,其中日期的形式都必须是yy/mm/dd。而且必须用英文环境下双引号(" ")引用。
DATE
DATE(year,month,day):返回一个表示某一特定日期的系列数。
Year:代表年,可为一到四位数。
Month:代表月份。
- c++ 宏定义中的##操作符
墙头上一根草
C++
#与##在宏定义中的--宏展开 #include <stdio.h> #define f(a,b) a##b #define g(a) #a #define h(a) g(a) int main() { &nbs
- 分析Spring源代码之,DI的实现
aijuans
springDI现源代码
(转)
分析Spring源代码之,DI的实现
2012/1/3 by tony
接着上次的讲,以下这个sample
[java]
view plain
copy
print
- for循环的进化
alxw4616
JavaScript
// for循环的进化
// 菜鸟
for (var i = 0; i < Things.length ; i++) {
// Things[i]
}
// 老鸟
for (var i = 0, len = Things.length; i < len; i++) {
// Things[i]
}
// 大师
for (var i = Things.le
- 网络编程Socket和ServerSocket简单的使用
百合不是茶
网络编程基础IP地址端口
网络编程;TCP/IP协议
网络:实现计算机之间的信息共享,数据资源的交换
协议:数据交换需要遵守的一种协议,按照约定的数据格式等写出去
端口:用于计算机之间的通信
每运行一个程序,系统会分配一个编号给该程序,作为和外界交换数据的唯一标识
0~65535
查看被使用的
- JDK1.5 生产消费者
bijian1013
javathread生产消费者java多线程
ArrayBlockingQueue:
一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。队列的头部 是在队列中存在时间最长的元素。队列的尾部 是在队列中存在时间最短的元素。新元素插入到队列的尾部,队列检索操作则是从队列头部开始获得元素。
ArrayBlockingQueue的常用方法:
- JAVA版身份证获取性别、出生日期及年龄
bijian1013
java性别出生日期年龄
工作中需要根据身份证获取性别、出生日期及年龄,且要还要支持15位长度的身份证号码,网上搜索了一下,经过测试好像多少存在点问题,干脆自已写一个。
CertificateNo.java
package com.bijian.study;
import java.util.Calendar;
import
- 【Java范型六】范型与枚举
bit1129
java
首先,枚举类型的定义不能带有类型参数,所以,不能把枚举类型定义为范型枚举类,例如下面的枚举类定义是有编译错的
public enum EnumGenerics<T> { //编译错,提示枚举不能带有范型参数
OK, ERROR;
public <T> T get(T type) {
return null;
- 【Nginx五】Nginx常用日志格式含义
bit1129
nginx
1. log_format
1.1 log_format指令用于指定日志的格式,格式:
log_format name(格式名称) type(格式样式)
1.2 如下是一个常用的Nginx日志格式:
log_format main '[$time_local]|$request_time|$status|$body_bytes
- Lua 语言 15 分钟快速入门
ronin47
lua 基础
-
-
单行注释
-
-
[[
[多行注释]
-
-
]]
-
-
-
-
-
-
-
-
-
-
-
1.
变量 & 控制流
-
-
-
-
-
-
-
-
-
-
num
=
23
-
-
数字都是双精度
str
=
'aspythonstring'
- java-35.求一个矩阵中最大的二维矩阵 ( 元素和最大 )
bylijinnan
java
the idea is from:
http://blog.csdn.net/zhanxinhang/article/details/6731134
public class MaxSubMatrix {
/**see http://blog.csdn.net/zhanxinhang/article/details/6731134
* Q35
求一个矩阵中最大的二维
- mongoDB文档型数据库特点
开窍的石头
mongoDB文档型数据库特点
MongoDD: 文档型数据库存储的是Bson文档-->json的二进制
特点:内部是执行引擎是js解释器,把文档转成Bson结构,在查询时转换成js对象。
mongoDB传统型数据库对比
传统类型数据库:结构化数据,定好了表结构后每一个内容符合表结构的。也就是说每一行每一列的数据都是一样的
文档型数据库:不用定好数据结构,
- [毕业季节]欢迎广大毕业生加入JAVA程序员的行列
comsci
java
一年一度的毕业季来临了。。。。。。。。
正在投简历的学弟学妹们。。。如果觉得学校推荐的单位和公司不适合自己的兴趣和专业,可以考虑来我们软件行业,做一名职业程序员。。。
软件行业的开发工具中,对初学者最友好的就是JAVA语言了,网络上不仅仅有大量的
- PHP操作Excel – PHPExcel 基本用法详解
cuiyadll
PHPExcel
导出excel属性设置//Include classrequire_once('Classes/PHPExcel.php');require_once('Classes/PHPExcel/Writer/Excel2007.php');$objPHPExcel = new PHPExcel();//Set properties 设置文件属性$objPHPExcel->getProperties
- IBM Webshpere MQ Client User Issue (MCAUSER)
darrenzhu
IBMjmsuserMQMCAUSER
IBM MQ JMS Client去连接远端MQ Server的时候,需要提供User和Password吗?
答案是根据情况而定,取决于所定义的Channel里面的属性Message channel agent user identifier (MCAUSER)的设置。
http://stackoverflow.com/questions/20209429/how-mca-user-i
- 网线的接法
dcj3sjt126com
一、PC连HUB (直连线)A端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 二、PC连PC (交叉线)A端:(568A): 白绿,绿,白橙,蓝,白蓝,橙,白棕,棕; B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 三、HUB连HUB&nb
- Vimium插件让键盘党像操作Vim一样操作Chrome
dcj3sjt126com
chromevim
什么是键盘党?
键盘党是指尽可能将所有电脑操作用键盘来完成,而不去动鼠标的人。鼠标应该说是新手们的最爱,很直观,指哪点哪,很听话!不过常常使用电脑的人,如果一直使用鼠标的话,手会发酸,因为操作鼠标的时候,手臂不是在一个自然的状态,臂肌会处于绷紧状态。而使用键盘则双手是放松状态,只有手指在动。而且尽量少的从鼠标移动到键盘来回操作,也省不少事。
在chrome里安装 vimium 插件
- MongoDB查询(2)——数组查询[六]
eksliang
mongodbMongoDB查询数组
MongoDB查询数组
转载请出自出处:http://eksliang.iteye.com/blog/2177292 一、概述
MongoDB查询数组与查询标量值是一样的,例如,有一个水果列表,如下所示:
> db.food.find()
{ "_id" : "001", "fruits" : [ "苹
- cordova读写文件(1)
gundumw100
JavaScriptCordova
使用cordova可以很方便的在手机sdcard中读写文件。
首先需要安装cordova插件:file
命令为:
cordova plugin add org.apache.cordova.file
然后就可以读写文件了,这里我先是写入一个文件,具体的JS代码为:
var datas=null;//datas need write
var directory=&
- HTML5 FormData 进行文件jquery ajax 上传 到又拍云
ileson
jqueryAjaxhtml5FormData
html5 新东西:FormData 可以提交二进制数据。
页面test.html
<!DOCTYPE>
<html>
<head>
<title> formdata file jquery ajax upload</title>
</head>
<body>
<
- swift appearanceWhenContainedIn:(version1.2 xcode6.4)
啸笑天
version
swift1.2中没有oc中对应的方法:
+ (instancetype)appearanceWhenContainedIn:(Class <UIAppearanceContainer>)ContainerClass, ... NS_REQUIRES_NIL_TERMINATION;
解决方法:
在swift项目中新建oc类如下:
#import &
- java实现SMTP邮件服务器
macroli
java编程
电子邮件传递可以由多种协议来实现。目前,在Internet 网上最流行的三种电子邮件协议是SMTP、POP3 和 IMAP,下面分别简单介绍。
◆ SMTP 协议
简单邮件传输协议(Simple Mail Transfer Protocol,SMTP)是一个运行在TCP/IP之上的协议,用它发送和接收电子邮件。SMTP 服务器在默认端口25上监听。SMTP客户使用一组简单的、基于文本的
- mongodb group by having where 查询sql
qiaolevip
每天进步一点点学习永无止境mongo纵观千象
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
- Struts2 Pojo(六)
Luob.
POJOstrust2
注意:附件中有完整案例
1.采用POJO对象的方法进行赋值和传值
2.web配置
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee&q
- struts2步骤
wuai
struts
1、添加jar包
2、在web.xml中配置过滤器
<filter>
<filter-name>struts2</filter-name>
<filter-class>org.apache.st