分类问题的几个评价指标(Precision、Recall、F1-Score、Micro-F1、Macro-F1)

 

 

四个基本概念

 

TP、True Positive   真阳性:预测为正,实际也为正

FP、False Positive  假阳性:预测为正,实际为负

FN、False Negative 假阴性:预测与负、实际为正

TN、True Negative 真阴性:预测为负、实际也为负。

【一致判真假,预测判阴阳。】

 

以分类问题为例:(word公式为什么粘不过来??头疼。)

分类问题的几个评价指标(Precision、Recall、F1-Score、Micro-F1、Macro-F1)_第1张图片

 

首先看真阳性:真阳性的定义是“预测为正,实际也是正”,这个最好理解,就是指预测正确,是哪个类就被分到哪个类。对类A而言,TP的个位数为2,对类B而言,TP的个数为2,对类C而言,TP的个数为1。

然后看假阳性,假阳性的定义是“预测为正,实际为负”,就是预测为某个类,但是实际不是。对类A而言,FP个数为0,我们预测之后,把1和2分给了A,这两个都是正确的,并不存在把不是A类的值分给A的情况。类B的FP是2,"3"和"8"都不是B类,但却分给了B,所以为假阳性。类C的假阳性个数为2。

最后看一下假阴性,假阴性的定义是“预测为负,实际为正”,对类A而言,FN为2,"3"和"4"分别预测为B和C,但是实际是A,也就是预测为负,实际为正。对类B而言,FN为1,对类C而言,FN为1。

 具体情况看如下表格:

 

A

B

C

总计

TP

2

2

1

5

FP

0

2

2

4

FN

2

1

1

4

分类问题的几个评价指标(Precision、Recall、F1-Score、Micro-F1、Macro-F1)_第2张图片

 

感谢这两位的指正 

 

精确率和召回率

分类问题的几个评价指标(Precision、Recall、F1-Score、Micro-F1、Macro-F1)_第3张图片

计算我们预测出来的某类样本中,有多少是被正确预测的。针对预测样本而言。

 

分类问题的几个评价指标(Precision、Recall、F1-Score、Micro-F1、Macro-F1)_第4张图片

针对原先实际样本而言,有多少样本被正确的预测出来了。

 

套用网上的一个例子:

某池塘有1400条鲤鱼,300只虾,300只鳖。现在以捕鲤鱼为目的。撒一大网,逮着了700条鲤鱼,200只虾,100只鳖。那么,这些指标分别如下:

精确率 = 700 / (700 +200 + 100) = 70%

召回率 = 700 / 1400 =50%

 

可以吧上述的例子看成分类预测问题,对于“鲤鱼来说”,TP真阳性为700,FP假阳性为300,FN假阴性为700。

Precison=TP/(TP+FP)=700(700+300)=70%

Recall=TP/(TP+FN)=700/(700+700)=50%

 

将上述例子,改变一下:把池子里的所有的鲤鱼、虾和鳖都一网打尽,观察这些指标的变化。

精确率 = 1400 / (1400 +300 + 300) = 70%

召回率 = 1400 / 1400 =100%

 

TP为1400:有1400条鲤鱼被预测出来;FP为600:有600个生物不是鲤鱼类,却被归类到鲤鱼;FN为0,鲤鱼都被归类到鲤鱼类去了,并没有归到其他类。

Precision=TP/(TP+FP)=1400/(1400+600)=70%

Recall=TP/(TP+FN)=1400/(1400)=100%

 

其实就是分母不同,一个分母是预测为正的样本数,另一个是原来样本中所有的正样本数。

 

作为预测者,我们当然是希望,Precision和Recall都保持一个较高的水准,但事实上这两者在某些情况下有矛盾的。比如极端情况下,我们只搜索出了一个结果,且是正确的,那么Precision就是100%,但是Recall就很低;而如果我们把所有结果都返回,那么比如Recall是100%,但是Precision就会很低。因此在不同的场合中需要自己判断希望Precision比较高或是Recall比较高,此时我们可以引出另一个评价指标—F1-Score(F-Measure)。

 F1-Score

F1分数(F1 Score),是统计学中用来衡量二分类模型精确度的一种指标。它同时兼顾了分类模型的精确率和召回率。F1分数可以看作是模型精确率和召回率的一种加权平均,它的最大值是1,最小值是0。(出自百度百科)

 

数学定义:F1分数(F1-Score),又称为平衡F分数(BalancedScore),它被定义为精确率和召回率的调和平均数。

更一般的,我们定义Fβ分数为:

分类问题的几个评价指标(Precision、Recall、F1-Score、Micro-F1、Macro-F1)_第5张图片

除了F1分数之外,F0.5分数和F2分数,在统计学中也得到了大量应用,其中,F2分数中,召回率的权重高于精确率,而F0.5分数中,精确率的权重高于召回率。

 

 Micro-F1和Macro-F1

最后看Micro-F1和Macro-F1。在第一个多标签分类任务中,可以对每个“类”,计算F1,显然我们需要把所有类的F1合并起来考虑。

这里有两种合并方式:

第一种计算出所有类别总的Precision和Recall,然后计算F1。

例如依照最上面的表格来计算:Precison=5/(5+4)=0.556,Recall=5/(5+4)=0.556,然后带入F1的公式求出F1,这种方式被称为Micro-F1微平均。

第二种方式是计算出每一个类的Precison和Recall后计算F1,最后将F1平均。

例如上式A类:P=2/(2+0)=1.0,R=2/(2+2)=0.5,F1=(2*1*0.5)/1+0.5=0.667。同理求出B类C类的F1,最后求平均值,这种范式叫做Macro-F1宏平均。

 

本篇完,如有错误,还望指正。

最后,放张我头像的照片。

分类问题的几个评价指标(Precision、Recall、F1-Score、Micro-F1、Macro-F1)_第6张图片

 

 

 

 

 

 

 

 

 

 

你可能感兴趣的:(机器学习)