"""
To know more or get code samples, please visit my website:
https://morvanzhou.github.io/tutorials/
Or search: 莫烦Python
Thank you for supporting!
"""
# please note, all tutorial code are running under python3.5.
# If you use the version like python2.7, please modify the code accordingly
# 6 - CNN example
import numpy as np
np.random.seed(1337) # for reproducibility
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Activation, Convolution2D, MaxPooling2D, Flatten
from keras.optimizers import Adam
# download the mnist to the path '~/.keras/datasets/' if it is the first time to be called
# X shape (60,000 28x28), y shape (10,000, )
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# data pre-processing
X_train = X_train.reshape(-1, 1, 28, 28)
X_test = X_test.reshape(-1, 1, 28, 28)
y_train = np_utils.to_categorical(y_train, nb_classes=10)
y_test = np_utils.to_categorical(y_test, nb_classes=10)
# Another way to build your CNN
model = Sequential()
# Conv layer 1 output shape (32, 28, 28)
#添加Convolution2D(卷积层),nb_filter:滤波器数量;nb_row:滤波器的宽度;nb_col:滤波器的高度;border_mode:滤波器的过滤方法
model.add(Convolution2D(
nb_filter=32,
nb_row=5,
nb_col=5,
border_mode='same', # Padding method
input_shape=(1, # channels
28, 28) # height & width
))
model.add(Activation('relu'))
# Pooling layer 1 (max pooling) output shape (32, 14, 14)
#pool_size:向下取样时考虑到多长多宽的图片;strides:步幅,取样时要跳跃的pixel
model.add(MaxPooling2D(
pool_size=(2, 2),
strides=(2, 2),
border_mode='same', # Padding method
))
# Conv layer 2 output shape (64, 14, 14)
model.add(Convolution2D(64, 5, 5, border_mode='same'))
model.add(Activation('relu'))
# Pooling layer 2 (max pooling) output shape (64, 7, 7)
model.add(MaxPooling2D(pool_size=(2, 2), border_mode='same'))
# Fully connected layer 1 input shape (64 * 7 * 7) = (3136), output shape (1024)
#进入全连接层,把卷积层抹平为一维的层
model.add(Flatten())
#抹平之后就可以用全连接层进行连接
model.add(Dense(1024))
model.add(Activation('relu'))
# Fully connected layer 2 to shape (10) for 10 classes
#进入第二个全连接层
model.add(Dense(10))
#进行分类
model.add(Activation('softmax'))
# Another way to define your optimizer
adam = Adam(lr=1e-4)
# We add metrics to get more results you want to see
model.compile(optimizer=adam,
loss='categorical_crossentropy',
metrics=['accuracy'])
print('Training ------------')
# Another way to train the model
model.fit(X_train, y_train, nb_epoch=1, batch_size=32,)
print('\nTesting ------------')
# Evaluate the model with the metrics we defined earlier
loss, accuracy = model.evaluate(X_test, y_test)
print('\ntest loss: ', loss)
print('\ntest accuracy: ', accuracy)