Spark SQL可以通过JDBC从关系型数据库中读取数据的方式创建DataFrame,通过对DataFrame一系列的计算后,还可以将数据再写回关系型数据库中。
1.启动Spark Shell,必须指定mysql连接驱动jar包
[root@hadoop1 spark-2.1.1-bin-hadoop2.7]# bin/spark-shell --master spark://hadoop1:7077,hadoop2:7077 --jars /home/tuzq/software/spark-2.1.1-bin-hadoop2.7/jars/mysql-connector-java-5.1.38.jar --driver-class-path /home/tuzq/software/spark-2.1.1-bin-hadoop2.7/jars/mysql-connector-java-5.1.38.jar
2.从mysql中加载数据
进入bigdata中创建person表:
CREATE DATABASE bigdata CHARACTER SET utf8;
USE bigdata;
CREATE TABLE person (
id INT(10) AUTO_INCREMENT PRIMARY KEY,
name varchar(100),
age INT(3)
) ENGINE=INNODB DEFAULT CHARSET=utf8;
scala> val sqlContext = new org.apache.spark.sql.SQLContext(sc)
scala> val jdbcDF = sqlContext.read.format("jdbc").options(Map("url" -> "jdbc:mysql://hadoop10:3306/bigdata", "driver" -> "com.mysql.jdbc.Driver", "dbtable" -> "person", "user" -> "root", "password" -> "123456")).load()
3.执行查询
scala> jdbcDF.show
+---+--------+---+
| id| name|age|
+---+--------+---+
| 1|zhangsan| 19|
| 2| lisi| 20|
| 3| wangwu| 28|
| 4| zhaoliu| 26|
| 5| tianqi| 55|
+---+--------+---+
package cn.toto.spark
import java.sql.DriverManager
import org.apache.spark.rdd.JdbcRDD
import org.apache.spark.{SparkConf, SparkContext}
/**
* Created by toto on 2017/7/11.
*/
object JdbcRDDDemo {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("JdbcRDDDemo").setMaster("local[2]")
val sc = new SparkContext(conf)
val connection = () => {
Class.forName("com.mysql.jdbc.Driver").newInstance()
DriverManager.getConnection("jdbc:mysql://hadoop10:3306/bigdata","root","123456")
}
//这个地方没有读取数据(数据库表也用的是person)
val jdbcRDD = new JdbcRDD(
sc,
connection,
"SELECT * FROM person where id >= ? AND id <= ?",
//这里表示从取数据库中的第1、2、3、4条数据,然后分两个区
1, 4, 2,
r => {
val id = r.getInt(1)
val code = r.getString(2)
(id, code)
}
)
//这里相当于是action获取到数据
val jrdd = jdbcRDD.collect()
println(jrdd.toBuffer)
sc.stop()
}
}
注意在运行的时候使用的还是person这个表,表中的数据如下:
将bigdata-1.0-SNAPSHOT.jar放到:/home/tuzq/software/sparkdata,如下:
注意在运行执行,要将mysql-connector-java-5.1.38.jar 放到:/home/tuzq/software/spark-2.1.1-bin-hadoop2.7/jars/下
bin/spark-submit --class cn.toto.spark.JdbcRDDDemo --master spark://hadoop1:7077 --jars /home/tuzq/software/spark-2.1.1-bin-hadoop2.7/jars/mysql-connector-java-5.1.38.jar --driver-class-path /home/tuzq/software/spark-2.1.1-bin-hadoop2.7/jars/mysql-connector-java-5.1.38.jar /home/tuzq/software/sparkdata/bigdata-1.0-SNAPSHOT.jar
package cn.toto.spark
import java.util.Properties
import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.{SparkConf, SparkContext}
/**
* Created by toto on 2017/7/11.
*/
object JdbcRDD {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("MySQL-Demo").setMaster("local")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
//通过并行化创建RDD
val personRDD = sc.parallelize(Array("14 tom 5", "15 jerry 3", "16 kitty 6")).map(_.split(" "))
//通过StrutType直接指定每个字段的schema
val schema = StructType(
List(
StructField("id",IntegerType,true),
StructField("name",StringType,true),
StructField("age",IntegerType,true)
)
)
//将RDD映射到rowRDD
val rowRDD = personRDD.map(p => Row(p(0).toInt, p(1).trim, p(2).toInt))
//将schema信息应用到rowRDD上
val personDataFrame = sqlContext.createDataFrame(rowRDD,schema)
//创建Properties存储数据库相关属性
val prop = new Properties()
prop.put("user", "root")
prop.put("password", "123456")
//将数据追加到数据库
personDataFrame.write.mode("append").jdbc("jdbc:mysql://hadoop10:3306/bigdata",
"bigdata.person",prop)
//停止SparkContext
sc.stop()
}
}
bin/spark-submit --class cn.toto.spark.JdbcRDD --master spark://hadoop1:7077 --jars /home/tuzq/software/spark-2.1.1-bin-hadoop2.7/jars/mysql-connector-java-5.1.38.jar --driver-class-path /home/tuzq/software/spark-2.1.1-bin-hadoop2.7/jars/mysql-connector-java-5.1.38.jar /home/tuzq/software/sparkdata/bigdata-1.0-SNAPSHOT.jar