队列、进程间通信、线程

目录

  • 进程互斥锁
    • 多进程同时抢购余票
    • 使用锁来保证数据安全
  • 队列
  • 进程间通信
  • 生产者与消费者
  • 线程
    • 线程的概念
    • 线程的两种创建方式
  • 线程对象的方法
  • 线程互斥锁

进程互斥锁

多进程同时抢购余票

# 并发运行,效率高,但竞争写同一文件,数据写入错乱
# data.json文件内容为 {"ticket_num": 1}
import json
import time
from multiprocessing import Process


def search(user):
    with open('data.json', 'r', encoding='utf-8') as f:
        dic = json.load(f)
    print(f'用户{user}查看余票,还剩{dic.get("ticket_num")}...')


def buy(user):
    with open('data.json', 'r', encoding='utf-8') as f:
        dic = json.load(f)

    time.sleep(0.1)
    if dic['ticket_num'] > 0:
        dic['ticket_num'] -= 1
        with open('data.json', 'w', encoding='utf-8') as f:
            json.dump(dic, f)
        print(f'用户{user}抢票成功!')

    else:
        print(f'用户{user}抢票失败')


def run(user):
    search(user)
    buy(user)


if __name__ == '__main__':
    for i in range(10):  # 模拟10个用户抢票
        p = Process(target=run, args=(f'用户{i}', ))
        p.start()

使用锁来保证数据安全

# data.json文件内容为 {"ticket_num": 1}
import json
import time
from multiprocessing import Process, Lock


def search(user):
    with open('data.json', 'r', encoding='utf-8') as f:
        dic = json.load(f)
    print(f'用户{user}查看余票,还剩{dic.get("ticket_num")}...')


def buy(user):
    with open('data.json', 'r', encoding='utf-8') as f:
        dic = json.load(f)

    time.sleep(0.2)
    if dic['ticket_num'] > 0:
        dic['ticket_num'] -= 1
        with open('data.json', 'w', encoding='utf-8') as f:
            json.dump(dic, f)
        print(f'用户{user}抢票成功!')

    else:
        print(f'用户{user}抢票失败')


def run(user, mutex):
    search(user)
    mutex.acquire()  # 加锁
    buy(user)
    mutex.release()  # 释放锁


if __name__ == '__main__':
    # 调用Lock()类得到一个锁对象
    mutex = Lock()

    for i in range(10):  # 模拟10个用户抢票
        p = Process(target=run, args=(f'用户{i}', mutex))
        p.start()

进程互斥锁:

  • 让并发变成串行,牺牲了执行效率,保证了数据安全
  • 在程序并发时,需要修改数据使用

队列

队列遵循的是先进先出

队列:相当于内存中一个队列空间,可以存放多个数据,但数据的顺序是由先进去的排在前面。

q.put() 添加数据

q.get() 取数据,遵循队列先进先出

q.get_nowait() 获取队列数据, 队列中没有就会报错

q.put_nowait 添加数据,若队列满了也会报错

q.full() 查看队列是否满了

q.empty() 查看队列是否为空

from multiprocessing import Queue

# 调用队列类,实例化队列对象
q = Queue(5)   # 队列中存放5个数据

# put添加数据,若队列里的数据满了就会卡住
q.put(1)
print('进入数据1')
q.put(2)
print('进入数据2')
q.put(3)
print('进入数据3')
q.put(4)
print('进入数据4')
q.put(5)
print('进入数据5')

# 查看队列是否满了
print(q.full())

# 添加数据, 若队列满了也会报错
q.put_nowait(6)

# q.get() 获取的数据遵循先进先出
print(q.get())
print(q.get())
print(q.get())
print(q.get())
print(q.get())
# print(q.get())
print(q.get_nowait())   # 获取队列数据, 队列中没有就会报错

# 判断队列是否为空
print(q.empty())
q.put(6)
print('进入数据6')

进程间通信

IPC(Inter-Process Communication)

进程间数据是相互隔离的,若想实现进程间通信,可以利用队列

from multiprocessing import Process, Queue

def task1(q):
    data = 'hello 你好'
    q.put(data)
    print('进程1添加数据到队列')


def task2(q):
    print(q.get())
    print('进程2从队列中获取数据')



if __name__ == '__main__':
    q = Queue()

    p1 = Process(target=task1, args=(q, ))
    p2 = Process(target=task2, args=(q, ))
    p1.start()
    p2.start()
    print('主进程')

生产者与消费者

在程序中,通过队列生产者把数据添加到队列中,消费者从队列中获取数据

from multiprocessing import Process, Queue
import time


# 生产者
def producer(name, food, q):
    for i in range(10):
        data = food, i
        msg = f'用户{name}开始制作{data}'
        print(msg)
        q.put(data)
        time.sleep(0.1)

# 消费者
def consumer(name, q):
    while True:
        data = q.get()
        if not data:
            break

        print(f'用户{name}开始吃{data}')


if __name__ == '__main__':
    q = Queue()
    p1 = Process(target=producer, args=('neo', '煎饼', q))
    p2 = Process(target=producer, args=('wick', '肉包', q))

    c1 = Process(target=consumer, args=('cwz', q))
    c2 = Process(target=consumer, args=('woods', q))

    p1.start()
    p2.start()
    
    c1.daemon = True
    c2.daemon = True
    c1.start()
    c2.start()
    print('主')

线程

线程的概念

进程与线程都是虚拟单位

进程:资源单位

线程:执行单位

开启一个进程,一定会有一个线程,线程才是真正执行者

开启进程:

  • 开辟一个名称空间,每开启一个进程都会占用一份内存资源
  • 会自带一个线程

开启线程:

  • 一个进程可以开启多个线程
  • 线程的开销远小于进程

注意:线程不能实现并行,线程只能实现并发,进程可以实现并行

线程的两种创建方式

from threading import Thread
import time

# 创建线程方式1
def task():
    print('线程开启')
    time.sleep(1)
    print('线程结束')

if __name__ == '__main__':
    t = Thread(target=task)
    t.start()


# 创建线程方式2
class MyThread(Thread):
    def run(self):
        print('线程开启...')
        time.sleep(1)
        print('线程结束...')


if __name__ == '__main__':
    t = MyThread()
    t.start()

线程对象的方法

from threading import Thread
from threading import current_thread
import time

def task():
    print(f'线程开启{current_thread().name}')
    time.sleep(1)
    print(f'线程结束{current_thread().name}')


if __name__ == '__main__':
    t = Thread(target=task)
    print(t.isAlive())
    # t.daemon = True
    t.start()
    print(t.isAlive())

线程互斥锁

线程之间数据是共享的

from threading import Thread
from threading import Lock
import time

mutex = Lock()
n = 100

def task(i):
    print(f'线程{i}启动')
    global n
    mutex.acquire()
    temp = n
    time.sleep(0.1)
    n = temp - 1
    print(n)
    mutex.release()
    
if __name__ == '__main__':
    t_l = []
    for i in range(100):
        t = Thread(target=task, args=(i, ))
        t_l.append(t)
        t.start()

    for t in t_l:
        t.join()

    print(n)

你可能感兴趣的:(队列、进程间通信、线程)