原始论文:Chatbox
本教程将介绍如何是seq2seq
模型转换为PyTorch可用的前端混合Torch脚本。 我们要转换的模型是来自于聊天机器人教程 Chatbot tutorial. 你可以把这个教程当做Chatbot tutorial的第二篇章,并且部署你的预训练模型,或者你也可以依据本文使用我们采取的预训练模型。就后者而言,你可以从原始的Chatbot tutorial参考更详细的数据预处理,模型理论和定义以及模型训练。
目录
What is the Hybrid Frontend?
Prepare Environment
Model Overview
Encoder
Decoder
Data Handling
Define Encoder
Hybrid Frontend Notes:
Define Decoder’s Attention Module
Define Decoder
Hybrid Frontend Notes:
Define Evaluation
Greedy Search Decoder
Hybrid Frontend Notes:
Evaluating an Input
Load Pretrained Parameters
Use hosted model
Use your own model
Hybrid Frontend Notes:
Decoder
GreedySearchDecoder
Print Graphs
Run Evaluation
Save Model
During the research and development phase of a deep learning-based project, it is advantageous to interact with an eager, imperative interface like PyTorch’s. This gives users the ability to write familiar, idiomatic Python, allowing for the use of Python data structures, control flow operations, print statements, and debugging utilities. Although the eager interface is a beneficial tool for research and experimentation applications, when it comes time to deploy the model in a production environment, having a graph-based model representation is very beneficial. A deferred graph representation allows for optimizations such as out-of-order execution, and the ability to target highly optimized hardware architectures. Also, a graph-based representation enables framework-agnostic model exportation. PyTorch provides mechanisms for incrementally converting eager-mode code into Torch Script, a statically analyzable and optimizable subset of Python that Torch uses to represent deep learning programs independently from the Python runtime.
The API for converting eager-mode PyTorch programs into Torch Script is found in the torch.jit module. This module has two core modalities for converting an eager-mode model to a Torch Script graph representation: tracing and scripting. The torch.jit.trace
function takes a module or function and a set of example inputs. It then runs the example input through the function or module while tracing the computational steps that are encountered, and outputs a graph-based function that performs the traced operations. Tracing is great for straightforward modules and functions that do not involve data-dependent control flow, such as standard convolutional neural networks. However, if a function with data-dependent if statements and loops is traced, only the operations called along the execution route taken by the example input will be recorded. In other words, the control flow itself is not captured. To convert modules and functions containing data-dependent control flow, a scripting mechanism is provided. Scripting explicitly converts the module or function code to Torch Script, including all possible control flow routes. To use script mode, be sure to inherit from the the torch.jit.ScriptModule
base class (instead of torch.nn.Module
) and add a torch.jit.script
decorator to your Python function or a torch.jit.script_method
decorator to your module’s methods. The one caveat with using scripting is that it only supports a restricted subset of Python. For all details relating to the supported features, see the Torch Script language reference. To provide the maximum flexibility, the modes of Torch Script can be composed to represent your whole program, and these techniques can be applied incrementally.
This tutorial was inspired by the following sources:
First, we will import the required modules and set some constants. If you are planning on using your own model, be sure that theMAX_LENGTH
constant is set correctly. As a reminder, this constant defines the maximum allowed sentence length during training and the maximum length output that the model is capable of producing.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import torch
import torch.nn as nn
import torch.nn.functional as F
import re
import os
import unicodedata
import numpy as np
device = torch.device("cpu")
MAX_LENGTH = 10 # Maximum sentence length
# Default word tokens
PAD_token = 0 # Used for padding short sentences
SOS_token = 1 # Start-of-sentence token
EOS_token = 2 # End-of-sentence token
As mentioned, the model that we are using is a sequence-to-sequence (seq2seq) model. This type of model is used in cases when our input is a variable-length sequence, and our output is also a variable length sequence that is not necessarily a one-to-one mapping of the input. A seq2seq model is comprised of two recurrent neural networks (RNNs) that work cooperatively: an encoder and a decoder.
Image source: https://jeddy92.github.io/JEddy92.github.io/ts_seq2seq_intro/
The encoder RNN iterates through the input sentence one token (e.g. word) at a time, at each time step outputting an “output” vector and a “hidden state” vector. The hidden state vector is then passed to the next time step, while the output vector is recorded. The encoder transforms the context it saw at each point in the sequence into a set of points in a high-dimensional space, which the decoder will use to generate a meaningful output for the given task.
The decoder RNN generates the response sentence in a token-by-token fashion. It uses the encoder’s context vectors, and internal hidden states to generate the next word in the sequence. It continues generating words until it outputs an EOS_token, representing the end of the sentence. We use an attention mechanism in our decoder to help it to “pay attention” to certain parts of the input when generating the output. For our model, we implement Luong et al.’s “Global attention” module, and use it as a submodule in our decode model.
Although our models conceptually deal with sequences of tokens, in reality, they deal with numbers like all machine learning models do. In this case, every word in the model’s vocabulary, which was established before training, is mapped to an integer index. We use a Voc
object to contain the mappings from word to index, as well as the total number of words in the vocabulary. We will load the object later before we run the model.
Also, in order for us to be able to run evaluations, we must provide a tool for processing our string inputs. The normalizeString
function converts all characters in a string to lowercase and removes all non-letter characters. The indexesFromSentence
function takes a sentence of words and returns the corresponding sequence of word indexes.
class Voc:
def __init__(self, name):
self.name = name
self.trimmed = False
self.word2index = {}
self.word2count = {}
self.index2word = {PAD_token: "PAD", SOS_token: "SOS", EOS_token: "EOS"}
self.num_words = 3 # Count SOS, EOS, PAD
def addSentence(self, sentence):
for word in sentence.split(' '):
self.addWord(word)
def addWord(self, word):
if word not in self.word2index:
self.word2index[word] = self.num_words
self.word2count[word] = 1
self.index2word[self.num_words] = word
self.num_words += 1
else:
self.word2count[word] += 1
# Remove words below a certain count threshold
def trim(self, min_count):
if self.trimmed:
return
self.trimmed = True
keep_words = []
for k, v in self.word2count.items():
if v >= min_count:
keep_words.append(k)
print('keep_words {} / {} = {:.4f}'.format(
len(keep_words), len(self.word2index), len(keep_words) / len(self.word2index)
))
# Reinitialize dictionaries
self.word2index = {}
self.word2count = {}
self.index2word = {PAD_token: "PAD", SOS_token: "SOS", EOS_token: "EOS"}
self.num_words = 3 # Count default tokens
for word in keep_words:
self.addWord(word)
# Lowercase and remove non-letter characters
def normalizeString(s):
s = s.lower()
s = re.sub(r"([.!?])", r" \1", s)
s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)
return s
# Takes string sentence, returns sentence of word indexes
def indexesFromSentence(voc, sentence):
return [voc.word2index[word] for word in sentence.split(' ')] + [EOS_token]
We implement our encoder’s RNN with the torch.nn.GRU
module which we feed a batch of sentences (vectors of word embeddings) and it internally iterates through the sentences one token at a time calculating the hidden states. We initialize this module to be bidirectional, meaning that we have two independent GRUs: one that iterates through the sequences in chronological order, and another that iterates in reverse order. We ultimately return the sum of these two GRUs’ outputs. Since our model was trained using batching, our EncoderRNN
model’s forward
function expects a padded input batch. To batch variable-length sentences, we allow a maximum of MAX_LENGTH tokens in a sentence, and all sentences in the batch that have less than MAX_LENGTH tokens are padded at the end with our dedicated PAD_token tokens. To use padded batches with a PyTorch RNN module, we must wrap the forward pass call with torch.nn.utils.rnn.pack_padded_sequence
and torch.nn.utils.rnn.pad_packed_sequence
data transformations. Note that the forward
function also takes an input_lengths
list, which contains the length of each sentence in the batch. This input is used by the torch.nn.utils.rnn.pack_padded_sequence
function when padding.
Since the encoder’s forward
function does not contain any data-dependent control flow, we will use tracing to convert it to script mode. When tracing a module, we can leave the module definition as-is. We will initialize all models towards the end of this document before we run evaluations.
class EncoderRNN(nn.Module):
def __init__(self, hidden_size, embedding, n_layers=1, dropout=0):
super(EncoderRNN, self).__init__()
self.n_layers = n_layers
self.hidden_size = hidden_size
self.embedding = embedding
# Initialize GRU; the input_size and hidden_size params are both set to 'hidden_size'
# because our input size is a word embedding with number of features == hidden_size
self.gru = nn.GRU(hidden_size, hidden_size, n_layers,
dropout=(0 if n_layers == 1 else dropout), bidirectional=True)
def forward(self, input_seq, input_lengths, hidden=None):
# Convert word indexes to embeddings
embedded = self.embedding(input_seq)
# Pack padded batch of sequences for RNN module
packed = torch.nn.utils.rnn.pack_padded_sequence(embedded, input_lengths)
# Forward pass through GRU
outputs, hidden = self.gru(packed, hidden)
# Unpack padding
outputs, _ = torch.nn.utils.rnn.pad_packed_sequence(outputs)
# Sum bidirectional GRU outputs
outputs = outputs[:, :, :self.hidden_size] + outputs[:, : ,self.hidden_size:]
# Return output and final hidden state
return outputs, hidden
Next, we’ll define our attention module (Attn
). Note that this module will be used as a submodule in our decoder model. Luong et al. consider various “score functions”, which take the current decoder RNN output and the entire encoder output, and return attention “energies”. This attention energies tensor is the same size as the encoder output, and the two are ultimately multiplied, resulting in a weighted tensor whose largest values represent the most important parts of the query sentence at a particular time-step of decoding.
# Luong attention layer
class Attn(torch.nn.Module):
def __init__(self, method, hidden_size):
super(Attn, self).__init__()
self.method = method
if self.method not in ['dot', 'general', 'concat']:
raise ValueError(self.method, "is not an appropriate attention method.")
self.hidden_size = hidden_size
if self.method == 'general':
self.attn = torch.nn.Linear(self.hidden_size, hidden_size)
elif self.method == 'concat':
self.attn = torch.nn.Linear(self.hidden_size * 2, hidden_size)
self.v = torch.nn.Parameter(torch.FloatTensor(hidden_size))
def dot_score(self, hidden, encoder_output):
return torch.sum(hidden * encoder_output, dim=2)
def general_score(self, hidden, encoder_output):
energy = self.attn(encoder_output)
return torch.sum(hidden * energy, dim=2)
def concat_score(self, hidden, encoder_output):
energy = self.attn(torch.cat((hidden.expand(encoder_output.size(0), -1, -1), encoder_output), 2)).tanh()
return torch.sum(self.v * energy, dim=2)
def forward(self, hidden, encoder_outputs):
# Calculate the attention weights (energies) based on the given method
if self.method == 'general':
attn_energies = self.general_score(hidden, encoder_outputs)
elif self.method == 'concat':
attn_energies = self.concat_score(hidden, encoder_outputs)
elif self.method == 'dot':
attn_energies = self.dot_score(hidden, encoder_outputs)
# Transpose max_length and batch_size dimensions
attn_energies = attn_energies.t()
# Return the softmax normalized probability scores (with added dimension)
return F.softmax(attn_energies, dim=1).unsqueeze(1)
Similarly to the EncoderRNN
, we use the torch.nn.GRU
module for our decoder’s RNN. This time, however, we use a unidirectional GRU. It is important to note that unlike the encoder, we will feed the decoder RNN one word at a time. We start by getting the embedding of the current word and applying a dropout. Next, we forward the embedding and the last hidden state to the GRU and obtain a current GRU output and hidden state. We then use our Attn
module as a layer to obtain the attention weights, which we multiply by the encoder’s output to obtain our attended encoder output. We use this attended encoder output as our context
tensor, which represents a weighted sum indicating what parts of the encoder’s output to pay attention to. From here, we use a linear layer and softmax normalization to select the next word in the output sequence.
Similarly to the EncoderRNN
, this module does not contain any data-dependent control flow. Therefore, we can once again use tracing to convert this model to Torch Script after it is initialized and its parameters are loaded.
class LuongAttnDecoderRNN(nn.Module):
def __init__(self, attn_model, embedding, hidden_size, output_size, n_layers=1, dropout=0.1):
super(LuongAttnDecoderRNN, self).__init__()
# Keep for reference
self.attn_model = attn_model
self.hidden_size = hidden_size
self.output_size = output_size
self.n_layers = n_layers
self.dropout = dropout
# Define layers
self.embedding = embedding
self.embedding_dropout = nn.Dropout(dropout)
self.gru = nn.GRU(hidden_size, hidden_size, n_layers, dropout=(0 if n_layers == 1 else dropout))
self.concat = nn.Linear(hidden_size * 2, hidden_size)
self.out = nn.Linear(hidden_size, output_size)
self.attn = Attn(attn_model, hidden_size)
def forward(self, input_step, last_hidden, encoder_outputs):
# Note: we run this one step (word) at a time
# Get embedding of current input word
embedded = self.embedding(input_step)
embedded = self.embedding_dropout(embedded)
# Forward through unidirectional GRU
rnn_output, hidden = self.gru(embedded, last_hidden)
# Calculate attention weights from the current GRU output
attn_weights = self.attn(rnn_output, encoder_outputs)
# Multiply attention weights to encoder outputs to get new "weighted sum" context vector
context = attn_weights.bmm(encoder_outputs.transpose(0, 1))
# Concatenate weighted context vector and GRU output using Luong eq. 5
rnn_output = rnn_output.squeeze(0)
context = context.squeeze(1)
concat_input = torch.cat((rnn_output, context), 1)
concat_output = torch.tanh(self.concat(concat_input))
# Predict next word using Luong eq. 6
output = self.out(concat_output)
output = F.softmax(output, dim=1)
# Return output and final hidden state
return output, hidden
As in the chatbot tutorial, we use a GreedySearchDecoder
module to facilitate the actual decoding process. This module has the trained encoder and decoder models as attributes, and drives the process of encoding an input sentence (a vector of word indexes), and iteratively decoding an output response sequence one word (word index) at a time.
Encoding the input sequence is straightforward: simply forward the entire sequence tensor and its corresponding lengths vector to theencoder
. It is important to note that this module only deals with one input sequence at a time, NOT batches of sequences. Therefore, when the constant 1 is used for declaring tensor sizes, this corresponds to a batch size of 1. To decode a given decoder output, we must iteratively run forward passes through our decoder model, which outputs softmax scores corresponding to the probability of each word being the correct next word in the decoded sequence. We initialize the decoder_input
to a tensor containing an SOS_token. After each pass through the decoder
, we greedily append the word with the highest softmax probability to the decoded_words
list. We also use this word as the decoder_input
for the next iteration. The decoding process terminates either if the decoded_words
list has reached a length of MAX_LENGTH or if the predicted word is the EOS_token.
The forward
method of this module involves iterating over the range of [0,max_length)[0,max_length) when decoding an output sequence one word at a time. Because of this, we should use scripting to convert this module to Torch Script. Unlike with our encoder and decoder models, which we can trace, we must make some necessary changes to the GreedySearchDecoder
module in order to initialize an object without error. In other words, we must ensure that our module adheres to the rules of the scripting mechanism, and does not utilize any language features outside of the subset of Python that Torch Script includes.
To get an idea of some manipulations that may be required, we will go over the diffs between the GreedySearchDecoder
implementation from the chatbot tutorial and the implementation that we use in the cell below. Note that the lines highlighted in red are lines removed from the original implementation and the lines highlighted in green are new.
Changes:
nn.Module
-> torch.jit.ScriptModule
torch.jit.ScriptModule
.decoder_n_layers
to the constructor arguments
TracedModule
(not Module
). Therefore, we cannot access the decoder’s number of layers with decoder.n_layers
. Instead, we plan for this, and pass this value in during module construction.GreedySearchDecoder
’s forward
method. However, now that we are using scripting, we do not have this freedom, as the assumption with scripting is that we cannot necessarily hold on to Python objects, especially when exporting. An easy solution to this is to store these values from the global scope as attributes to the module in the constructor, and add them to a special list called __constants__
so that they can be used as literal values when constructing the graph in the forward
method. An example of this usage is on NEW line 19, where instead of using the device
and SOS_token
global values, we use our constant attributes self._device
and self._SOS_token
.torch.jit.script_method
decorator to the forward
method
forward
method arguments
decoder_input
decoder_input
tensor with torch.LongTensor([[SOS_token]])
. When scripting, we are not allowed to initialize tensors in a literal fashion like this. Instead, we can initialize our tensor with an explicit torch function such as torch.ones
. In this case, we can easily replicate the scalar decoder_input
tensor by multiplying 1 by our SOS_token value stored in the constant self._SOS_token
.class GreedySearchDecoder(torch.jit.ScriptModule):
def __init__(self, encoder, decoder, decoder_n_layers):
super(GreedySearchDecoder, self).__init__()
self.encoder = encoder
self.decoder = decoder
self._device = device
self._SOS_token = SOS_token
self._decoder_n_layers = decoder_n_layers
__constants__ = ['_device', '_SOS_token', '_decoder_n_layers']
@torch.jit.script_method
def forward(self, input_seq : torch.Tensor, input_length : torch.Tensor, max_length : int):
# Forward input through encoder model
encoder_outputs, encoder_hidden = self.encoder(input_seq, input_length)
# Prepare encoder's final hidden layer to be first hidden input to the decoder
decoder_hidden = encoder_hidden[:self._decoder_n_layers]
# Initialize decoder input with SOS_token
decoder_input = torch.ones(1, 1, device=self._device, dtype=torch.long) * self._SOS_token
# Initialize tensors to append decoded words to
all_tokens = torch.zeros([0], device=self._device, dtype=torch.long)
all_scores = torch.zeros([0], device=self._device)
# Iteratively decode one word token at a time
for _ in range(max_length):
# Forward pass through decoder
decoder_output, decoder_hidden = self.decoder(decoder_input, decoder_hidden, encoder_outputs)
# Obtain most likely word token and its softmax score
decoder_scores, decoder_input = torch.max(decoder_output, dim=1)
# Record token and score
all_tokens = torch.cat((all_tokens, decoder_input), dim=0)
all_scores = torch.cat((all_scores, decoder_scores), dim=0)
# Prepare current token to be next decoder input (add a dimension)
decoder_input = torch.unsqueeze(decoder_input, 0)
# Return collections of word tokens and scores
return all_tokens, all_scores
Next, we define some functions for evaluating an input. The evaluate
function takes a normalized string sentence, processes it to a tensor of its corresponding word indexes (with batch size of 1), and passes this tensor to a GreedySearchDecoder
instance called searcher
to handle the encoding/decoding process. The searcher returns the output word index vector and a scores tensor corresponding to the softmax scores for each decoded word token. The final step is to convert each word index back to its string representation using voc.index2word
.
We also define two functions for evaluating an input sentence. The evaluateInput
function prompts a user for an input, and evaluates it. It will continue to ask for another input until the user enters ‘q’ or ‘quit’.
The evaluateExample
function simply takes a string input sentence as an argument, normalizes it, evaluates it, and prints the response.
def evaluate(encoder, decoder, searcher, voc, sentence, max_length=MAX_LENGTH):
### Format input sentence as a batch
# words -> indexes
indexes_batch = [indexesFromSentence(voc, sentence)]
# Create lengths tensor
lengths = torch.tensor([len(indexes) for indexes in indexes_batch])
# Transpose dimensions of batch to match models' expectations
input_batch = torch.LongTensor(indexes_batch).transpose(0, 1)
# Use appropriate device
input_batch = input_batch.to(device)
lengths = lengths.to(device)
# Decode sentence with searcher
tokens, scores = searcher(input_batch, lengths, max_length)
# indexes -> words
decoded_words = [voc.index2word[token.item()] for token in tokens]
return decoded_words
# Evaluate inputs from user input (stdin)
def evaluateInput(encoder, decoder, searcher, voc):
input_sentence = ''
while(1):
try:
# Get input sentence
input_sentence = input('> ')
# Check if it is quit case
if input_sentence == 'q' or input_sentence == 'quit': break
# Normalize sentence
input_sentence = normalizeString(input_sentence)
# Evaluate sentence
output_words = evaluate(encoder, decoder, searcher, voc, input_sentence)
# Format and print response sentence
output_words[:] = [x for x in output_words if not (x == 'EOS' or x == 'PAD')]
print('Bot:', ' '.join(output_words))
except KeyError:
print("Error: Encountered unknown word.")
# Normalize input sentence and call evaluate()
def evaluateExample(sentence, encoder, decoder, searcher, voc):
print("> " + sentence)
# Normalize sentence
input_sentence = normalizeString(sentence)
# Evaluate sentence
output_words = evaluate(encoder, decoder, searcher, voc, input_sentence)
output_words[:] = [x for x in output_words if not (x == 'EOS' or x == 'PAD')]
print('Bot:', ' '.join(output_words))
Ok, its time to load our model!
To load the hosted model:
loadFilename
variable to the path to the downloaded checkpoint file.checkpoint = torch.load(loadFilename)
line uncommented, as the hosted model was trained on CPU.To load your own pre-trained model:
loadFilename
variable to the path to the checkpoint file that you wish to load. Note that if you followed the convention for saving the model from the chatbot tutorial, this may involve changing the model_name
, encoder_n_layers
, decoder_n_layers
, hidden_size
, and checkpoint_iter
(as these values are used in the model path).checkpoint =torch.load(loadFilename)
line. If you trained the model on a GPU and are running this tutorial on a CPU, uncomment thecheckpoint = torch.load(loadFilename, map_location=torch.device('cpu'))
line.Notice that we initialize and load parameters into our encoder and decoder models as usual. Also, we must call .to(device)
to set the device options of the models and .eval()
to set the dropout layers to test mode before we trace the models. TracedModule
objects do not inherit the to
or eval
methods.
save_dir = os.path.join("data", "save")
corpus_name = "cornell movie-dialogs corpus"
# Configure models
model_name = 'cb_model'
attn_model = 'dot'
#attn_model = 'general'
#attn_model = 'concat'
hidden_size = 500
encoder_n_layers = 2
decoder_n_layers = 2
dropout = 0.1
batch_size = 64
# If you're loading your own model
# Set checkpoint to load from
checkpoint_iter = 4000
# loadFilename = os.path.join(save_dir, model_name, corpus_name,
# '{}-{}_{}'.format(encoder_n_layers, decoder_n_layers, hidden_size),
# '{}_checkpoint.tar'.format(checkpoint_iter))
# If you're loading the hosted model
loadFilename = 'data/4000_checkpoint.tar'
# Load model
# Force CPU device options (to match tensors in this tutorial)
checkpoint = torch.load(loadFilename, map_location=torch.device('cpu'))
encoder_sd = checkpoint['en']
decoder_sd = checkpoint['de']
encoder_optimizer_sd = checkpoint['en_opt']
decoder_optimizer_sd = checkpoint['de_opt']
embedding_sd = checkpoint['embedding']
voc = Voc(corpus_name)
voc.__dict__ = checkpoint['voc_dict']
print('Building encoder and decoder ...')
# Initialize word embeddings
embedding = nn.Embedding(voc.num_words, hidden_size)
embedding.load_state_dict(embedding_sd)
# Initialize encoder & decoder models
encoder = EncoderRNN(hidden_size, embedding, encoder_n_layers, dropout)
decoder = LuongAttnDecoderRNN(attn_model, embedding, hidden_size, voc.num_words, decoder_n_layers, dropout)
# Load trained model params
encoder.load_state_dict(encoder_sd)
decoder.load_state_dict(decoder_sd)
# Use appropriate device
encoder = encoder.to(device)
decoder = decoder.to(device)
# Set dropout layers to eval mode
encoder.eval()
decoder.eval()
print('Models built and ready to go!')
Out:
Building encoder and decoder ...
Models built and ready to go!
Convert Model to Torch Script
Encoder
As previously mentioned, to convert the encoder model to Torch Script, we use tracing. Tracing any module requires running an example input through the model’s forward method and trace the computational graph that the data encounters. The encoder model takes an input sequence and a corresponding lengths tensor. Therefore, we create an example input sequence tensor test_seq, which is of appropriate size (MAX_LENGTH, 1), contains numbers in the appropriate range [0,voc.num_words)[0,voc.num_words), and is of the appropriate type (int64). We also create a test_seq_length scalar which realistically contains the value corresponding to how many words are in the test_seq. The next step is to use the torch.jit.trace function to trace the model. Notice that the first argument we pass is the module that we want to trace, and the second is a tuple of arguments to the module’s forward method.
We perform the same process for tracing the decoder as we did for the encoder. Notice that we call forward on a set of random inputs to the traced_encoder to get the output that we need for the decoder. This is not required, as we could also simply manufacture a tensor of the correct shape, type, and value range. This method is possible because in our case we do not have any constraints on the values of the tensors because we do not have any operations that could fault on out-of-range inputs.
Recall that we scripted our searcher module due to the presence of data-dependent control flow. In the case of scripting, we do the conversion work up front by adding the decorator and making sure the implementation complies with scripting rules. We initialize the scripted searcher the same way that we would initialize an un-scripted variant.
### Convert encoder model
# Create artificial inputs
test_seq = torch.LongTensor(MAX_LENGTH, 1).random_(0, voc.num_words)
test_seq_length = torch.LongTensor([test_seq.size()[0]])
# Trace the model
traced_encoder = torch.jit.trace(encoder, (test_seq, test_seq_length))
### Convert decoder model
# Create and generate artificial inputs
test_encoder_outputs, test_encoder_hidden = traced_encoder(test_seq, test_seq_length)
test_decoder_hidden = test_encoder_hidden[:decoder.n_layers]
test_decoder_input = torch.LongTensor(1, 1).random_(0, voc.num_words)
# Trace the model
traced_decoder = torch.jit.trace(decoder, (test_decoder_input, test_decoder_hidden, test_encoder_outputs))
### Initialize searcher module
scripted_searcher = GreedySearchDecoder(traced_encoder, traced_decoder, decoder.n_layers)
Now that our models are in Torch Script form, we can print the graphs of each to ensure that we captured the computational graph appropriately. Since our scripted_searcher
contains our traced_encoder
and traced_decoder
, these graphs will print inline.
print('scripted_searcher graph:\n', scripted_searcher.graph)
Out:
scripted_searcher graph: graph(%input_seq : Tensor, %input_length : Tensor, %max_length : int, %3 : Float(7826, 500), %4 : Float(1500, 500), %5 : Float(1500, 500), %6 : Float(1500), %7 : Float(1500), %8 : Float(1500, 500), %9 : Float(1500, 500), %10 : Float(1500), %11 : Float(1500), %12 : Float(1500, 1000), %13 : Float(1500, 500), %14 : Float(1500), %15 : Float(1500), %16 : Float(1500, 1000), %17 : Float(1500, 500), %18 : Float(1500), %19 : Float(1500), %122 : Float(7826, 500), %123 : Float(1500, 500), %124 : Float(1500, 500), %125 : Float(1500), %126 : Float(1500), %127 : Float(1500, 500), %128 : Float(1500, 500), %129 : Float(1500), %130 : Float(1500), %131 : Float(500, 1000), %132 : Float(500), %133 : Float(7826, 500), %134 : Float(7826)): %100 : int? = prim::Constant() %58 : int = prim::Constant[value=9223372036854775807](), scope: EncoderRNN %53 : float = prim::Constant[value=0](), scope: EncoderRNN %43 : float = prim::Constant[value=0.1](), scope: EncoderRNN/GRU[gru] %42 : int = prim::Constant[value=2](), scope: EncoderRNN/GRU[gru] %41 : bool = prim::Constant[value=1](), scope: EncoderRNN/GRU[gru] %36 : int = prim::Constant[value=6](), scope: EncoderRNN/GRU[gru] %34 : int = prim::Constant[value=500](), scope: EncoderRNN/GRU[gru] %25 : int = prim::Constant[value=4](), scope: EncoderRNN %24 : Device = prim::Constant[value="cpu"](), scope: EncoderRNN %21 : bool = prim::Constant[value=0](), scope: EncoderRNN/Embedding[embedding] %20 : int = prim::Constant[value=-1](), scope: EncoderRNN/Embedding[embedding] %90 : int = prim::Constant[value=0]() %94 : int = prim::Constant[value=1]() %input.7 : Float(10, 1, 500) = aten::embedding(%3, %input_seq, %20, %21, %21), scope: EncoderRNN/Embedding[embedding] %lengths : Long(1) = aten::to(%input_length, %24, %25, %21, %21), scope: EncoderRNN %input.1 : Float(10, 500), %batch_sizes : Long(10) = aten::_pack_padded_sequence(%input.7, %lengths, %21), scope: EncoderRNN %35 : int[] = prim::ListConstruct(%25, %94, %34), scope: EncoderRNN/GRU[gru] %hx : Float(4, 1, 500) = aten::zeros(%35, %36, %90, %24), scope: EncoderRNN/GRU[gru] %40 : Tensor[] = prim::ListConstruct(%4, %5, %6, %7, %8, %9, %10, %11, %12, %13, %14, %15, %16, %17, %18, %19), scope: EncoderRNN/GRU[gru] %46 : Float(10, 1000), %encoder_hidden : Float(4, 1, 500) = aten::gru(%input.1, %batch_sizes, %hx, %40, %41, %42, %43, %21, %41), scope: EncoderRNN/GRU[gru] %49 : int = aten::size(%batch_sizes, %90), scope: EncoderRNN %max_seq_length : Long() = prim::NumToTensor(%49), scope: EncoderRNN %51 : int = prim::Int(%max_seq_length), scope: EncoderRNN %outputs : Float(10, 1, 1000), %55 : Long(1) = aten::_pad_packed_sequence(%46, %batch_sizes, %21, %53, %51), scope: EncoderRNN %60 : Float(10, 1, 1000) = aten::slice(%outputs, %90, %90, %58, %94), scope: EncoderRNN %65 : Float(10, 1, 1000) = aten::slice(%60, %94, %90, %58, %94), scope: EncoderRNN %70 : Float(10, 1!, 500) = aten::slice(%65, %42, %90, %34, %94), scope: EncoderRNN %75 : Float(10, 1, 1000) = aten::slice(%outputs, %90, %90, %58, %94), scope: EncoderRNN %80 : Float(10, 1, 1000) = aten::slice(%75, %94, %90, %58, %94), scope: EncoderRNN %85 : Float(10, 1!, 500) = aten::slice(%80, %42, %34, %58, %94), scope: EncoderRNN %encoder_outputs : Float(10, 1, 500) = aten::add(%70, %85, %94), scope: EncoderRNN %decoder_hidden.1 : Tensor = aten::slice(%encoder_hidden, %90, %90, %42, %94) %98 : int[] = prim::ListConstruct(%94, %94) %101 : Tensor = aten::ones(%98, %25, %100, %24) %decoder_input.1 : Tensor = aten::mul(%101, %94) %104 : int[] = prim::ListConstruct(%90) %all_tokens.1 : Tensor = aten::zeros(%104, %25, %100, %24) %110 : int[] = prim::ListConstruct(%90) %all_scores.1 : Tensor = aten::zeros(%110, %100, %100, %24) %all_scores : Tensor, %all_tokens : Tensor, %decoder_hidden : Tensor, %decoder_input : Tensor = prim::Loop(%max_length, %41, %all_scores.1, %all_tokens.1, %decoder_hidden.1, %decoder_input.1) block0(%118 : int, %192 : Tensor, %188 : Tensor, %120 : Tensor, %119 : Tensor): %input.2 : Float(1, 1, 500) = aten::embedding(%122, %119, %20, %21, %21), scope: LuongAttnDecoderRNN/Embedding[embedding] %input.3 : Float(1, 1, 500) = aten::dropout(%input.2, %43, %21), scope: LuongAttnDecoderRNN/Dropout[embedding_dropout] %142 : Tensor[] = prim::ListConstruct(%123, %124, %125, %126, %127, %128, %129, %130), scope: LuongAttnDecoderRNN/GRU[gru] %hidden : Float(1, 1, 500), %decoder_hidden.2 : Float(2, 1, 500) = aten::gru(%input.3, %120, %142, %41, %42, %43, %21, %21, %21), scope: LuongAttnDecoderRNN/GRU[gru] %151 : Float(10, 1, 500) = aten::mul(%hidden, %encoder_outputs), scope: LuongAttnDecoderRNN/Attn[attn] %153 : int[] = prim::ListConstruct(%42), scope: LuongAttnDecoderRNN/Attn[attn] %attn_energies : Float(10, 1) = aten::sum(%151, %153, %21), scope: LuongAttnDecoderRNN/Attn[attn] %input.4 : Float(1!, 10) = aten::t(%attn_energies), scope: LuongAttnDecoderRNN/Attn[attn] %158 : Float(1, 10) = aten::softmax(%input.4, %94), scope: LuongAttnDecoderRNN/Attn[attn] %attn_weights : Float(1, 1, 10) = aten::unsqueeze(%158, %94), scope: LuongAttnDecoderRNN/Attn[attn] %163 : Float(1!, 10, 500) = aten::transpose(%encoder_outputs, %90, %94), scope: LuongAttnDecoderRNN %context.1 : Float(1, 1, 500) = aten::bmm(%attn_weights, %163), scope: LuongAttnDecoderRNN %rnn_output : Float(1, 500) = aten::squeeze(%hidden, %90), scope: LuongAttnDecoderRNN %context : Float(1, 500) = aten::squeeze(%context.1, %94), scope: LuongAttnDecoderRNN %169 : Tensor[] = prim::ListConstruct(%rnn_output, %context), scope: LuongAttnDecoderRNN %input.5 : Float(1, 1000) = aten::cat(%169, %94), scope: LuongAttnDecoderRNN %172 : Float(1000!, 500!) = aten::t(%131), scope: LuongAttnDecoderRNN/Linear[concat] %175 : Float(1, 500) = aten::addmm(%132, %input.5, %172, %94, %94), scope: LuongAttnDecoderRNN/Linear[concat] %input.6 : Float(1, 500) = aten::tanh(%175), scope: LuongAttnDecoderRNN %177 : Float(500!, 7826!) = aten::t(%133), scope: LuongAttnDecoderRNN/Linear[out] %input : Float(1, 7826) = aten::addmm(%134, %input.6, %177, %94, %94), scope: LuongAttnDecoderRNN/Linear[out] %decoder_output : Float(1, 7826) = aten::softmax(%input, %94), scope: LuongAttnDecoderRNN %decoder_scores : Tensor, %decoder_input.2 : Tensor = aten::max(%decoder_output, %94, %21) %190 : Tensor[] = prim::ListConstruct(%188, %decoder_input.2) %all_tokens.2 : Tensor = aten::cat(%190, %90) %194 : Tensor[] = prim::ListConstruct(%192, %decoder_scores) %all_scores.2 : Tensor = aten::cat(%194, %90) %decoder_input.3 : Tensor = aten::unsqueeze(%decoder_input.2, %90) -> (%41, %all_scores.2, %all_tokens.2, %decoder_hidden.2, %decoder_input.3) %202 : (Tensor, Tensor) = prim::TupleConstruct(%all_tokens, %all_scores) return (%202)
Finally, we will run evaluation of the chatbot model using the Torch Script models. If converted correctly, the models will behave exactly as they would in their eager-mode representation.
By default, we evaluate a few common query sentences. If you want to chat with the bot yourself, uncomment the evaluateInput
line and give it a spin.
# Evaluate examples
sentences = ["hello", "what's up?", "who are you?", "where am I?", "where are you from?"]
for s in sentences:
evaluateExample(s, traced_encoder, traced_decoder, scripted_searcher, voc)
# Evaluate your input
#evaluateInput(traced_encoder, traced_decoder, scripted_searcher, voc)
Out:
> hello Bot: hello . > what's up? Bot: i m going to get my car . > who are you? Bot: i m the owner . > where am I? Bot: in the house . > where are you from? Bot: south america .
Now that we have successfully converted our model to Torch Script, we will serialize it for use in a non-Python deployment environment. To do this, we can simply save our scripted_searcher
module, as this is the user-facing interface for running inference against the chatbot model. When saving a Script module, use script_module.save(PATH) instead of torch.save(model, PATH).
scripted_searcher.save("scripted_chatbot.pth")
Total running time of the script: ( 0 minutes 0.930 seconds)