Spark读写hbase数据

Spark读取hbase的数据 :

import org.apache.spark.sql.SparkSession
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.hadoop.hbase._
import org.apache.hadoop.hbase.client.Scan
import org.apache.hadoop.hbase.util.{Base64, Bytes}
import org.apache.hadoop.hbase.protobuf.ProtobufUtil



object HbaseTest {

  def main(args: Array[String]): Unit = {
    val sess = SparkSession.builder().appName("wangjk").master("local[2]")
      .config("spark.testing.memory", "2147480000").getOrCreate();
    val sc = sess.sparkContext;

    val tablename = "Air:airDay"
    val conf = HBaseConfiguration.create()
    //设置zooKeeper集群地址,也可以通过将hbase-site.xml导入classpath,但是建议在程序里这样设置
    conf.set("hbase.zookeeper.quorum","192.168.0.112:2181,192.168.0.114:2181,192.168.0.116:2181")
    //设置zookeeper连接端口,默认2181
    conf.set("hbase.zookeeper.property.clientPort", "2181")
    conf.set(TableInputFormat.INPUT_TABLE, tablename)


    val startRowkey="0,110000,20180220"
    val endRowkey="0,110000,20180302"
    //开始rowkey和结束一样代表精确查询某条数据

    //组装scan语句
    val scan=new Scan(Bytes.toBytes(startRowkey),Bytes.toBytes(endRowkey))
    scan.setCacheBlocks(false)
/*    scan.addFamily(Bytes.toBytes("ks"));
    scan.addColumn(Bytes.toBytes("ks"), Bytes.toBytes("data"))*/

    //scan类转化成string类型
     val proto= ProtobufUtil.toScan(scan)
      val ScanToString = Base64.encodeBytes(proto.toByteArray());
    conf.set(TableInputFormat.SCAN,ScanToString)

    //读取数据并转化成rdd
    val hBaseRDD = sc.newAPIHadoopRDD(conf, classOf[TableInputFormat],
      classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],
      classOf[org.apache.hadoop.hbase.client.Result])

    val count = hBaseRDD.count()
    println(count)
    hBaseRDD.foreach{case (_,result) =>{
      //获取行键
      val key = Bytes.toString(result.getRow)
      //通过列族和列名获取列
      val citycode = Bytes.toString(result.getValue("f1".getBytes,"citycode".getBytes))
      val daytime = Bytes.toInt(result.getValue("f1".getBytes,"daytime".getBytes))
      println("Row key:"+key+" Name:"+citycode+" Age:"+daytime)
    }}





  }
}

Spark写入hbase数据:

import org.apache.spark.sql.SparkSession
import org.apache.hadoop.hbase.client.Put
import org.apache.hadoop.hbase._
import org.apache.hadoop.hbase.mapred.TableOutputFormat
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.mapred.JobConf
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
object HbaseWrite {

  def main(args: Array[String]): Unit = {
    val sess = SparkSession.builder().appName("wangjk").master("local[2]")
      .config("spark.testing.memory", "2147480000").getOrCreate();
    val sc = sess.sparkContext;

    val tablename = "default:airTest"
    val conf = HBaseConfiguration.create()
    //设置zooKeeper集群地址,也可以通过将hbase-site.xml导入classpath,但是建议在程序里这样设置
    conf.set("hbase.zookeeper.quorum","192.168.0.112:2181,192.168.0.114:2181,192.168.0.116:2181")
    //设置zookeeper连接端口,默认2181
    conf.set("hbase.zookeeper.property.clientPort", "2181")

    //初始化jobconfTableOutputFormat必须是org.apache.hadoop.hbase.mapred包下的!
    val jobConf = new JobConf(conf)
    jobConf.setOutputFormat(classOf[TableOutputFormat])
    jobConf.set(TableOutputFormat.OUTPUT_TABLE, tablename)

    val indataRDD = sc.makeRDD(Array("1,jack,15","2,Lily,16","3,mike,16"))


    val rdd = indataRDD.map(_.split(',')).map{arr=>{
      /*一个Put对象就是一行记录,在构造方法中指定主键
       * 所有插入的数据必须用org.apache.hadoop.hbase.util.Bytes.toBytes方法转换
       * Put.add方法接收三个参数:列族,列名,数据
       */
      val put = new Put(Bytes.toBytes(arr(0).toInt))
      put.add(Bytes.toBytes("f1"),Bytes.toBytes("name"),Bytes.toBytes(arr(1)))
      put.add(Bytes.toBytes("f1"),Bytes.toBytes("age"),Bytes.toBytes(arr(2).toInt))
      //转化成RDD[(ImmutableBytesWritable,Put)]类型才能调用saveAsHadoopDataset
      (new ImmutableBytesWritable, put)
    }}

    rdd.saveAsHadoopDataset(jobConf)


  }

}

你可能感兴趣的:(Spark)