[hadoop@emr-worker-9 UserPortrait]$ pwd
/home/hadoop/nisj/UserPortrait
[hadoop@emr-worker-9 UserPortrait]$ ll
total 616
-rw-r--r-- 1 hadoop hadoop 2516 Mar 7 18:21 indexCalc-barrage-byUidOnly.sql
-rw-r--r-- 1 hadoop hadoop 4160 Mar 8 16:38 indexCalc-gift-byUidOnly.sql
-rw-r--r-- 1 hadoop hadoop 4562 Mar 7 14:29 indexCalc-view-byGameId.sql
-rw-r--r-- 1 hadoop hadoop 4562 Mar 7 14:29 indexCalc-view-byRoomId.sql
-rw-r--r-- 1 hadoop hadoop 4529 Mar 7 14:29 indexCalc-view-byTagId.sql
-rw-r--r-- 1 hadoop hadoop 4411 Mar 7 14:29 indexCalc-view-byUidOnly.sql
-rw-r--r-- 1 hadoop hadoop 4292 Mar 7 14:29 indexCalc-view-historyBehavior.sql
-rw------- 1 hadoop hadoop 565692 Mar 8 17:55 nohup.out
-rwxr-x--- 1 hadoop hadoop 569 Mar 8 16:38 user_portrait_view_moreThread.sh
#!/usr/bin/env bash
echo `date`,'数据跑批开始...'
indexCalc_sqlFile_array=(
indexCalc-view-byGameId.sql
indexCalc-view-byRoomId.sql
indexCalc-view-byTagId.sql
indexCalc-view-byUidOnly.sql
indexCalc-barrage-byUidOnly.sql
indexCalc-gift-byUidOnly.sql
)
for indexCalc_sqlFile in ${indexCalc_sqlFile_array[*]}
do
{
/usr/lib/hive-current/bin/hive -f /home/hadoop/nisj/UserPortrait/$indexCalc_sqlFile
sleep 1
} &
done
wait
/usr/lib/hive-current/bin/hive -f /home/hadoop/nisj/UserPortrait/indexCalc-view-historyBehavior.sql
sleep 1
echo `date`,'数据跑批完成!'
/home/hadoop/nisj/UserPortrait/indexCalc-view-byGameId.sql
-- 观看时长等的计算
-- 观看总时长、总次数;有效观看总时长、有效观看次数、有效平均时长;第一次观看时间
drop table if exists rcd_static_view_bygameid_basic;
create table rcd_static_view_bygameid_basic as
with Tab_recommend_data_view_byDay as(
select uid,gameid,sum(view_time) view_time,pt_day from recommend_data_view where uid>0 group by uid,gameid,pt_day)
select uid,gameid,
sum(view_time) total_view_time,
count(view_time) total_view_times,
sum(case when view_time>=5 then view_time else 0 end ) total_view_time_effective,
sum(case when view_time>=5 then 1 else 0 end ) total_view_times_effective,
sum(case when view_time>=5 then view_time else 0 end )/sum(case when view_time>=5 then 1 else 0 end ) avg_view_time_effective,
min(pt_day) frist_view_day,
max(pt_day) newest_view_day
from Tab_recommend_data_view_byDay
group by uid,gameid
;
-- 最后一次、倒数第二次有效观看及单次有效最大观看时长相关(时长与时间)
drop table if exists rcd_static_view_bygameid_rank;
create table rcd_static_view_bygameid_rank as
with Tab_recommend_data_view_byDay as(
select uid,gameid,sum(view_time) view_time,pt_day from recommend_data_view where uid>0 group by uid,gameid,pt_day)
select uid,gameid,
max(case when effective_desc_rk=1 then pt_day end) tailender_effective_day,
max(case when effective_desc_rk=1 then view_time end) tailender_effective_view_time,
max(case when effective_desc_rk=2 then pt_day end) penul_timate_effective_day,
max(case when effective_desc_rk=2 then view_time end) penul_timate_effective_view_time,
max(case when effective_desc_rk2=1 then pt_day end) max_effective_view_day,
max(case when effective_desc_rk2=1 then view_time end) max_effective_view_time
from (
select uid,gameid,view_time,pt_day,
row_number()over(partition by uid,gameid order by pt_day desc) effective_desc_rk,
row_number()over(partition by uid,gameid order by view_time desc) effective_desc_rk2
from Tab_recommend_data_view_byDay
where view_time>=5
) x1
group by uid,gameid
;
-- 最近七天有效观看时长
drop table if exists rcd_static_view_bygameid_last7day;
create table rcd_static_view_bygameid_last7day as
with Tab_recommend_data_view_byDay as(
select uid,gameid,sum(view_time) view_time,pt_day from recommend_data_view where uid>0 group by uid,gameid,pt_day)
select uid,gameid,
sum(case when view_time>=5 then view_time else 0 end ) total_view_time_effective,
sum(case when view_time>=5 then 1 else 0 end ) total_view_times_effective,
sum(case when view_time>=5 then view_time else 0 end )/sum(case when view_time>=5 then 1 else 0 end ) avg_view_time_effective,
min(pt_day) frist_view_day,
max(pt_day) newest_view_day
from Tab_recommend_data_view_byDay
where view_time>=5 and pt_day between date_sub(from_unixtime(unix_timestamp(),'yyyy-MM-dd'),7) and date_sub(from_unixtime(unix_timestamp(),'yyyy-MM-dd'),1)
group by uid,gameid
;
-- 按周统计每周有效观看时长
drop table if exists rcd_static_view_bygameid_byweek;
create table rcd_static_view_bygameid_byweek as
with Tab_recommend_data_view_byDay as(
select uid,gameid,sum(view_time) view_time,pt_day from recommend_data_view where uid>0 group by uid,gameid,pt_day)
select uid,gameid,concat(year(pt_day),'@',weekofyear(pt_day)) week_no,
sum(case when view_time>=5 then view_time else 0 end ) total_view_time_effective,
sum(case when view_time>=5 then 1 else 0 end ) total_view_times_effective,
sum(case when view_time>=5 then view_time else 0 end )/sum(case when view_time>=5 then 1 else 0 end ) avg_view_time_effective,
min(pt_day) frist_view_day,
max(pt_day) newest_view_day
from Tab_recommend_data_view_byDay
where view_time>=5
group by uid,gameid,concat(year(pt_day),'@',weekofyear(pt_day))
;
-- 按月统计每月有效观看时长
drop table if exists rcd_static_view_bygameid_bymonth;
create table rcd_static_view_bygameid_bymonth as
with Tab_recommend_data_view_byDay as(
select uid,gameid,sum(view_time) view_time,pt_day from recommend_data_view where uid>0 group by uid,gameid,pt_day)
select uid,gameid,concat(year(pt_day),'@',month(pt_day)) month_no,
sum(case when view_time>=5 then view_time else 0 end ) total_view_time_effective,
sum(case when view_time>=5 then 1 else 0 end ) total_view_times_effective,
sum(case when view_time>=5 then view_time else 0 end )/sum(case when view_time>=5 then 1 else 0 end ) avg_view_time_effective,
min(pt_day) frist_view_day,
max(pt_day) newest_view_day
from Tab_recommend_data_view_byDay
where view_time>=5
group by uid,gameid,concat(year(pt_day),'@',month(pt_day))
;