Flume对接Kafka之KafkaSink

Flume对接Kafka之KafkaSink

  • 默认配置对接
    • 配置flume
      • 创建并配置file-flume-kafka.conf
      • 启动kafka消费者
      • 启动flume
      • 追加数据查看消费情况
  • 自定义Flume的Kafka拦截器
    • 创建自定义拦截
    • 打成jar包放进flume/lib中
    • 配置flume(和默认有所不同)
      • 注意:不要配置成flume的自定义拦截器配置
    • 开启kakfa的两个消费者分别获取first和second分区信息
    • 追加数据查看消费情况

默认配置对接

配置flume

创建并配置file-flume-kafka.conf

1.在flume/job中创建配置文件file-flume-kafka.conf
2.配置

#define
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F -c +0 /opt/module/data/flume.log
a1.sources.r1.shell = /bin/bash -c

# sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.bootstrap.servers = hadoop120:9092,hadoop121:9092,hadoop122:9092
a1.sinks.k1.kafka.topic = first 
a1.sinks.k1.kafka.flumeBatchSize = 20 
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.kafka.producer.linger.ms = 1

# channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# bind
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

启动kafka消费者

[DIao@hadoop120 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop120:9092 --topic first

启动flume

[Diao@hadoop120 flume]$ bin/flume-ng agent -c conf -f job/file-flume-kafka.conf -n a1

追加数据查看消费情况

[Diao@hadoop120 ~]$ cd /opt/module/datas/
[Diao@hadoop120 datas]$ echo aaa >> flume.log

自定义Flume的Kafka拦截器

创建自定义拦截

 public class MyKafkainterceptor implements Interceptor {
        //创建集合
        private List eventHeader = null;
    
        public void initialize() {
            //初始化集合
            eventHeader = new ArrayList();
        }
    
        public Event intercept(Event event) {
            //获取event的header
            Map header = event.getHeaders();
            //获取event的body
            String body = new String(event.getBody());
            //判断body中是否包含Diao
            if(body != null && body.contains("Diao")){
           		 header.put("topic","first"); ←这里的first是kafka中的分区号
        	}else{
            	header.put("topic", "second");←这里的second是kafka中的分区号
        	}
        //返回event
        return event;
    }

    public List intercept(List events) {
        //清空集合
        eventHeader.clear();
        //遍历events
        for(Event event:events){
            eventHeader.add(intercept(event));
        }
        //返回集合
        return eventHeader;
    }

    public static class Mybuilder implements Builder{

        public Interceptor build() {
            //创建自定义flume拦截器
            return new MyKafkainterceptor();
        }

        public void configure(Context context) {

        }
    }

    public void close() {

    }
}

打成jar包放进flume/lib中

配置flume(和默认有所不同)

#define
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F -c +0 /opt/module/datas/flume.log
a1.sources.r1.shell = /bin/bash -c

a1.sources.r1.interceptors = i1 ←新东西 ←新东西 ←新东西 ←新东西
a1.sources.r1.interceptors.i1.type = com.alibaba.interceptor.MyKafkainterceptor$Mybuilder ←新东西 ←新东西

# sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.bootstrap.servers = hadoop120:9092,hadoop121:9092,hadoop122:9092
a1.sinks.k1.kafka.topic = first

# channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# bind
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

注意:不要配置成flume的自定义拦截器配置

a1.sources.r1.selector.type = multiplexing
a1.sources.r1.selector.header = title
a1.sources.r1.selector.mapping.A = c1
a1.sources.r1.selector.mapping.B = c2

a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = com.alibaba.flume.Myinterceptor$MyBuild

flume的kafka拦截器不需要配上面四个配置

开启kakfa的两个消费者分别获取first和second分区信息

[Diao@hadoop120 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop120:9092 --topic first

[Diao@hadoop120 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop120:9092 -topic second

追加数据查看消费情况

数据1: echo BigDiao >> flume.log
数据2: echo OtherSmall >> flume.log
查看两个消费者是否分别接受到相应的数据

你可能感兴趣的:(大数据,Kafka,flume)