- 特斯拉及新能源车企笔试面试题型解析上-21期
启芯硬件笔记
经验分享PCBEMI硬件工程面试职场和发展
本专栏预计更新90期左右。当前第21期-特斯拉硬件.特斯拉作为全球领先的电动汽车、能源存储和人工智能公司,其硬件工程师岗位的招聘通常包括笔试和多轮技术面试,考察领域涵盖数字电路设计、模拟电路、嵌入式系统、电动车技术和自动驾驶等。由于特斯拉的创新性和技术领先地位,其面试问题可能更加注重实际应用和问题解决能力。笔试通常旨在考察候选人的基础理论知识、问题分析能力、电路设计与调试经验、以及对相关工具和方法
- 水文学模型学习笔记:马斯京根(Muskingum)河道汇流算法
Lunar*
水文算法学习笔记
引言在水文学和水资源管理中,河道汇流演算是一个至关重要的环节。它用于预测洪水波在河道中向下游传播时的形态变化,是进行洪水预报、水库调度和防洪规划的基础。马斯京根法(MuskingumMethod)是其中最经典和应用最广泛的河道汇流计算方法之一。本文将从马斯京根法的基础理论出发,推导其演算方程,并重点解析一种更稳定和精确的改进方法——分段连续马斯京根法,最后提供并解读一个完整、鲁棒的Python实现
- 【笔记8】嵌入式系统中的内存分段
玉~你还好吗
嵌入式系统嵌入式C语言微机原理
前几天参加了某外企二面,项目讲完没继续对着质询,上来就问了一道关于嵌入式系统堆栈段分配的问题。当时就已经知道这把又要塔西狼......所以今天赶紧查资料看网课,总算是把这块基础理论补齐了。在嵌入式系统中,内存管理和程序结构与Windows系统类似,但由于资源受限(如内存容量小、处理器性能低),需要更精细的优化。嵌入式系统的内存分段规则如下表所示:低地址CodeSegment(代码段).text程序
- 贪心算法详解:理解贪心算法看这一篇就够了
爪哇学长
Java编程基础及进阶贪心算法算法javapython
文章目录1.贪心算法的基础理论1.1什么是贪心选择性质1.2证明贪心选择性质2.设计步骤2.1定义问题和目标2.2确定数据结构2.3排序和选择策略2.4迭代与决策2.5终止条件3.实例详解3.1活动选择问题3.2分数背包问题3.3最小生成树(Kruskal算法)1.贪心算法的基础理论1.1什么是贪心选择性质贪心选择性质是指一个全局最优解可以通过一系列局部最优的选择构建出来。这意味着在做出每个选择时
- FVCOM 潮流、波浪、泥沙、水质、温盐、染色剂、粒子示踪、嵌套、背景流、自动化全流
weixin_贾
水文水资源水文模型集合气象人必备模型水质数值模拟FVCOM三维水质计算染色剂
【内容简介】:第一章、FVCOM基础理论1、主流海洋数值模式及特点介绍2、FVCOM控制方程介绍3、FVCOM数值方法介绍4、FVCOM程序计算流程介绍5、FVCOM求解过程推导详解第二章、FVCOM运行环境部署1、虚拟机安装及配置2、Linux系统安装配置3、Linux系统下FVCOM常用命令介绍4、INTEL编译器安装配置5、OPENMPI安装配置6、NETCDF库安装配置7、Linux环境变
- FVCOM模型基础理论、运行环境部署、三维水动力、温盐模拟、波浪模拟、泥沙模拟、示踪粒子模拟、染色剂交换模拟及水质数值模拟全过程
小艳加油
水资源FVCOM水环境水质波浪泥沙
近年来,随着计算技术的发展和对海洋、水环境问题认识的加深,数值模拟技术在海洋、水环境等科学研究中的应用越来越广泛。FVCOM因其独特的优点,成为研究海洋动力过程、污染物扩散、水质变化等问题的重要工具。作为一种基于有限体积法的数值模型,以其精确的计算方法和强大的适应性,广泛应用于水环境、潮流、温盐、波浪、泥沙等多种过程的模拟。FVCOM采用非结构化网格,可以灵活地适应复杂地形和不规则边界,这使得它在
- FVCOM基础理论+模型安装、运行环境部署、三维水动力、温盐模拟、波浪模拟、泥沙模拟、示踪粒子模拟、染色剂交换模拟及水质数值模拟的全过程
小新很忙
水文算法经验分享
近年来,随着计算技术的发展和对海洋、水环境问题认识的加深,数值模拟技术在海洋、水环境等科学研究中的应用越来越广泛。FVCOM因其独特的优点,成为研究海洋动力过程、污染物扩散、水质变化等问题的重要工具。作为一种基于有限体积法的数值模型,以其精确的计算方法和强大的适应性,广泛应用于水环境、潮流、温盐、波浪、泥沙等多种过程的模拟。FVCOM采用非结构化网格,可以灵活地适应复杂地形和不规则边界,这使得它在
- FVCOM 潮流、波浪、泥沙、水质、温盐、染色剂、粒子示踪、嵌套、背景流、自动化全流程
青春不败 177-3266-0520
海洋学fvcom海洋学海洋气象海洋水动力海洋数值模拟泥沙波浪数值模拟
FVCOM采用非结构化网格,可以灵活地适应复杂地形和不规则边界,这使得它在模拟中表现非常出色。其次基于有限体积法,确保了计算的保守性和稳定性,能够准确模拟潮流、波浪和泥沙等物理过程。第一:FVCOM基础理论1、主流海洋数值模式及特点2、FVCOM控制方程3、FVCOM数值方法4、FVCOM程序计算流程5、FVCOM求解过程推导第二:FVCOM运行环境部署1、虚拟机安装及配置2、Linux系统安装配
- 【专栏介绍】【2025算法面试通关全攻略】
再见孙悟空_
【2025算法面试通关全攻略】算法面试职场和发展机器学习算法面试题算法工程师面试面试合集
专栏定位:打造算法面试的“百科全书”,覆盖全领域、全难度、全题型无论你是刚入门的“算法小白”,还是追求技术突破的资深工程师,亦或是跨领域求职的转行者,本专栏将通过12大核心领域、300+精选试题、4类题型设计(理论/算法/编程/项目),帮你构建从基础理论到工程实践的完整知识体系,突破面试瓶颈,斩获高薪Offer!核心优势:分层训练、体系化覆盖、紧贴行业脉搏难度分级,适配不同水平基础题(40%):夯
- 智能光学计算成像技术前沿体系解析
m0_75133639
光电光学成像光子学生物医学材料科学计算成像技术全息成像研究生
当前光学成像领域正经历以人工智能为驱动的范式变革。本知识体系涵盖以下核心模块:基础理论层从计算成像物理模型(含波前分析、图像传感器噪声建模)切入,建立光学-算法联合优化理论框架,重点解析正则化逆问题求解(如ADMM算法)与神经表示(NeuralRepresentations)等前沿数学工具。AI融合层深度剖析深度学习在成像中的革新应用:端到端光学设计:通过可微光学模型(衍射/折射/复杂透镜)实现硬
- 资深Java工程师的面试题目(八)AI大模型
刘一说
后端技术栈JavaAI自说java面试人工智能
以下是针对Java面试者的AI大模型相关题目,涵盖基础理论、实际应用、代码实现和部署优化等方向:一、基础理论类题目1.Transformer架构与应用场景题目:请说明Encoder-Only、Decoder-Only和Encoder-Decoder架构的区别,并举例说明它们在AI大模型中的典型应用场景。解析:Encoder-Only(如BERT):用于理解型任务(如文本分类、问答系统)。原理:通过
- 线性代数导引:线性方程组
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
线性代数导引:线性方程组线性方程组是线性代数中的基本问题之一,具有广泛的实际应用背景。本篇文章将深入探讨线性方程组的基础理论,阐述其算法原理,并通过实际代码实例详细讲解具体的操作步骤。通过学习本文,你将掌握线性方程组的解法,理解其数学模型,并能够应用相关技术解决实际问题。1.背景介绍1.1问题由来线性方程组在数学、物理、工程等领域有着广泛应用。例如,在电路分析中,线性方程组描述了电路中各节点电位之
- 浙江省计算机三级网络技术全攻略
HR刀姐
本文还有配套的精品资源,点击获取简介:本复习资料详细覆盖计算机三级网络技术考试的各个方面,包括网络基础、协议标准、局域网与广域网技术、网络设计规划、设备管理、应用服务以及新兴技术,旨在提升应试者对计算机网络技术的全面理解和实践操作能力。1.计算机网络基础理论1.1计算机网络的定义计算机网络是由多个通过通信线路连接的计算机组成,它们可以共享资源和交换信息。在现代信息社会中,计算机网络已经成为一个不可
- 基于EKF的三自由度车辆定位算法解析与实践
南风寺山
本文还有配套的精品资源,点击获取简介:扩展卡尔曼滤波器(EKF)是处理非线性系统的有效算法,广泛应用于车辆定位、自动驾驶和机器人导航。本文档提供的源码针对车辆三自由度动态模型实现了EKF,通过传感器数据融合提高了车辆定位的精度。文档详细解析了EKF在车辆定位中的应用,从基础理论到算法流程,再到源码的具体实现,为开发者提供了深入学习EKF的机会,并展示了如何利用EKF实现精确的车辆定位。1.EKF基
- ChatGPT引领的AI面试攻略系列:AI全栈工程师篇
梦想的理由
深度学习chatgpt人工智能面试
系列文章目录AI全栈工程师(本文)文章目录系列文章目录一、前言二、面试题1.基础理论与数据处理2.机器学习3.深度学习4.大模型与迁移学习5.计算机视觉6.自然语言处理(NLP)7.多模态学习8.AI生成内容(AIGC)9.编程语言与工具10.模型评估与优化11.系统部署与维护12.其他前沿技术13.算法与数据结构14.软件工程15.项目管理与团队协作16.伦理和法律17.行业应用18.最新研究与
- 算法第5天|哈希表基础理论总结、有效的字母异位词LeetCode242、两个数组的交集LeetCode349、快乐数LeetCode202、两数之和LeetCode1
孟大本事要学习
算法散列表哈希算法
今日整体问题总结:1、在使用map中要注意find(x)查询的是键,而不是值2、要注意多使用迭代器来解决问题,而不是总是使用下标,要知道set、map常用的一些函数,便于简化计算。3、当判断一个值是不是出现过,要注意使用哈希表(数组、map、set要注意使用场合)哈希希表(散列表,hashtable)基础理论总结简单理解:哈希表就是一个数组,通过数组的下标索引访问数组中的元素哈希表作用:1、将一个
- 数学融智学基础理论:元子与元组的自动区分证明
geneculture
融智学全球语言定位系统全球知识定位系统算法人工智能
数学融智学基础理论之一邹晓辉以下是对融智学理论体系中元子(言)与元组(语)在八大形式体系中自动区分能力的清晰表达:融智学理论:元子与元组的自动区分证明核心理论基于融智学理论体系,通过形式化方法证明:元子(言)与元组(语)在字、式、图、表、音、像、立体、活体八大形式体系中具有普适的自动区分能力。这一能力源于两个根本数学原理:其一是,自由幺半群结构:所有元组均可表示为元子的有序组合自由幺半群是代数结构
- 14、 探索并行处理技术及其在现代计算中的应用
AWS云计算
并行处理多核处理器集群计算
探索并行处理技术及其在现代计算中的应用1.引言随着信息技术的迅猛发展,现代计算环境正经历着前所未有的变革。并行处理技术作为一种提高计算效率的重要手段,逐渐成为研究热点。本文将深入探讨并行处理技术的基础理论、应用场景以及面临的挑战,并通过具体的案例和技术细节,展示如何有效地实现并行处理。2.并行处理技术概述并行处理是指通过多个处理器或核心同时执行多个任务,以提高计算速度和效率。根据不同的硬件架构,并
- 股票量价时空理论,实战应用!
程序化交易助手
量化炒股量化交易股票开户Python程序化交易PTradeQMT量化交易量化股票deepseek
股票量价时空理论,实战应用!什么是量价时空理论?量价时空理论,听起来好像很高大上,其实它就是股票分析中的一个基础理论。简单来说,就是通过成交量(量)、价格(价)、时间(时)和空间(空)四个维度来分析股票的走势。这个理论的核心在于,股票价格的变动不是孤立的,而是受到这四个因素共同影响的结果。量:成交量的秘密成交量是市场活跃度的直接体现。成交量大,说明市场对这个股票的兴趣大,可能是资金流入的信号;成交
- 科技发展:人类福祉的保障
AI天才研究院
ChatGPTAI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
《科技发展:人类福祉的保障》关键词:科技发展,人类福祉,人工智能,生物技术,环境科学,伦理问题摘要:本文探讨了科技发展对人类福祉的深远影响,通过分析人工智能、生物技术和环境科学等领域的进展,探讨了这些技术如何为人类带来福祉,同时探讨了在科技发展中面临的伦理和社会问题,以及如何保障科技发展带来的福祉。目录大纲《科技发展:人类福祉的保障》第一部分:科技发展的基础理论第1章:科技发展的历史与现状1.1科
- 宏观交通流仿真软件:TransCAD_(3).交通需求预测基础理论
kkchenjj
交通物流仿真数据库交通物流仿真服务器
交通需求预测基础理论1.交通需求预测的概念和重要性交通需求预测是城市交通规划和管理中的一项重要任务,旨在通过科学的方法预测未来某个时间段内的交通需求量。这些预测结果对于交通设施的规划、设计、运营和管理具有重要意义。交通需求预测通常涉及以下几个步骤:数据收集:收集必要的交通数据,包括人口、就业、土地使用、交通网络等。模型构建:根据收集的数据构建交通需求预测模型。模型校准:通过历史数据校准模型,以提高
- 深度学习入门:Python搭建简单神经网络模型
缑宇澄
python
在人工智能浪潮中,深度学习凭借强大的特征提取与模式识别能力成为核心技术,而神经网络则是深度学习的基石。从图像识别到自然语言处理,神经网络以独特的结构和学习机制,让计算机能够模拟人类大脑处理复杂信息的过程。本文将带领你从基础理论出发,使用Python和Keras库搭建一个简单的神经网络模型,开启深度学习的探索之旅。一、神经网络基础理论1.1神经元与网络结构神经网络的基本单元是人工神经元(又称节点或单
- 神经网络学习-神经网络简介【Transformer、pytorch、Attention介绍与区别】
Crabfishhhhh
神经网络学习transformerpythonpytorch
神经网络学习笔记本笔记总结了神经网络基础理论、常见模型结构、优化方法以及PyTorch实践,适用于初学者和进阶者查阅学习。一、神经网络基础1.神经元模型神经元通过输入加权求和后激活:y=f(∑i=1nwixi+b)y=f\left(\sum_{i=1}^{n}w_ix_i+b\right)y=f(i=1∑nwixi+b)xix_ixi:输入wiw_iwi:权重bbb:偏置fff:激活函数,如ReL
- 测试与测试开发
威威可以的
c++gitee数据库数据结构集成测试
测试的职业核心:降低软件质量风险测试工程师:测试基础理论,测试方法,测试用例设计,缺陷管理工具,自动化测试基础,测试文档编写等;测试开发核心知识:编程语言,自动化测试框架开发,持续集成/持续交付,接口和性能的测试。
- 物联网专业核心课程以及就业方向
速易达网络
pythonc++
物联网专业作为信息技术与产业应用深度融合的交叉学科,其课程体系覆盖硬件、软件、网络、数据等全链条技术,就业方向则随智能技术普及呈现多元化趋势。以下是基于最新行业动态与教育实践的系统分析:一、物联网专业核心课程体系物联网课程设计注重“底层硬件+通信协议+数据处理+行业应用”的贯通能力培养,主要分为四大模块:基础理论与技术电子与嵌入式系统:电路设计、单片机开发(如STM32)、传感器原理、PCB设计,
- 扩散模型(Diffusion Models)的革命性进展
jerwey
深度学习DiffusionModel
文章目录1.基础理论突破(2020-2021)(1)DDPM(DenoisingDiffusionProbabilisticModels)(2)DDIM(DenoisingDiffusionImplicitModels)2.加速采样与效率提升(2021-2022)(3)Score-BasedModels(SDE/ODE)(4)LatentDiffusionModels(LDM/StableDiff
- 生成对抗网络(GAN)基础原理深度解析:从直观理解到形式化表达
青柚MATLAB学习
对抗网络生成对抗网络GAN生成器判别器目标函数交叉熵损失
摘要本文详细解析生成对抗网络(GAN)的核心原理,从通俗类比入手,结合印假钞与警察博弈的案例阐述生成器与判别器的对抗机制;通过模型结构示意图,解析噪声采样、样本生成及判别流程;基于公式推导目标函数的数学本质,剖析判别器与生成器的优化逻辑;最后对比GAN目标函数与交叉熵损失的关联差异。本文结合公式推导与概念对比,助力读者建立GAN基础理论体系。关键词:生成对抗网络GAN生成器判别器目标函数交叉熵损失
- 结构力学仿真软件:Strand7:动力学分析:理论与Strand7实践_2024-08-10_22-42-51.Tex
chenjj4003
材料力学2算法人工智能java前端数据库
结构力学仿真软件:Strand7:动力学分析:理论与Strand7实践动力学分析基础理论动力学分析概述动力学分析是结构力学的一个重要分支,它研究结构在动态载荷作用下的响应。动态载荷可以是周期性的(如风、波浪、机器振动),也可以是非周期性的(如地震、爆炸)。动力学分析通常包括模态分析、谐波分析、频谱分析以及瞬态分析等,每种分析方法都有其特定的应用场景和解决的问题。自由度与约束条件在结构动力学分析中,
- 目标检测领域最新突破:2025年你必须掌握的5大创新方向!附教程!
学算法的程霖
目标检测人工智能计算机视觉机器学习深度学习自然语言处理大模型
目标检测是计算机视觉的核心任务之一,涉及算法学习、应用场景优化和学术创新三个关键方向。以下是系统的总结和建议:一、目标检测算法学习方向1.基础理论核心任务:定位(BoundingBox)+分类(Class)。关键概念:IoU(交并比)、NMS(非极大值抑制)、Anchor机制。损失函数:分类损失(Cross-Entropy)、回归损失(SmoothL1、GIoU)。必学经典模型:Two-Stage
- 【代码训练营Day03】链表part1
十八岁讨厌编程
算法训练营链表数据结构
文章目录链表基础理论移除链表元素设计链表反转链表链表基础理论几个需要关注的知识点:链表与数组的不同之处就在于:链表在内存中不一定是连续的,可以是离散存储的,他们之间通过指针进行连接。这也就决定了链表是不能随机查询的,只能通过指针顺藤摸瓜进行顺序查询。在数组中删除和添加操作会影响到后续的所有元素,而链表是通过指针链接,我们在删除和添加的时候,是对指针所指元素进行修改。数组的长度在初始化的时候就已经定
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla