TensorFlow 的数据模型-----张量(Tensor)

作者:man_world
原文地址:https://blog.csdn.net/mzpmzk/article/details/78636137

Tensor 定义

  • A Tensor is a symbolic handle to one of the outputs of an Operation. It does not hold the values of that operation’s output, but instead provides a means of computing those values in a TensorFlow tf.Session.TensorFlow 的数据模型-----张量(Tensor)_第1张图片
  • 在 TensorFlow 中,所有在节点之间传递的数据都为 Tensor 对象(可以看作 n 维的数组),常用图像数据的表示形式 为:batch*height*width*channel
    这里写图片描述
  • Tensor-like objects

    • tf.Tensor
    • tf.Variable
    • numpy.ndarray
    • list (and lists of tensor-like objects)
    • Scalar Python types: bool, float, int, str

    Note: By default, TensorFlow will create a new tf.Tensor each time you use the same tensor-like object.

  • Some special tensors

    • tf.constant():返回一个常量 tensor
    • tf.Variable():返回一个 tensor-like 对象,表示变量
    • tf.SparseTensor():返回一个tensor-like 对象
    • tf.placeholder():return a tensor that may be used as a handle for feeding a value, but not evaluated directly.

  • 二、Tensor 创建

    • TF op:可接收标准 Python 数据类型,如整数、字符串、由它们构成的列表或者Numpy 数组,并将它们自动转化为张量。**单个数值将被转化为0阶张量(或标量),数值列表将被转化为1阶张量(向量),由列表构成的列表**将被转化为2阶张量(矩阵),以此类推。
    • Noteshape 要以 listtuple 的形式传入

    1、常量 Tensor 的创建

    • Constant Value Tensors

      # 产生全 0 的张量
      tf.zeros(shape, dtype=tf.float32, name=None)
      tf.zeros_like(tensor, dtype=None, name=None)
      

    # 产生全 1 的张量
    tf.ones(shape, dtype=tf.float32, name=None)
    tf.ones_like(tensor, dtype=None, name=None)

    # Creates a tensor of shape and fills it with value
    tf.fill(dims, value, name=None)
    tf.fill([2, 3], 9) ==> [[9, 9, 9]
    [9, 9, 9]]

    # 产生常量 Tensor, value 值可为 python 标准数据类型、Numpy 等
    tf.constant(value, dtype=None, shape=None, name=‘Const’)
    tf.constant(-1.0, shape=[2, 3]) => [[-1., -1., -1.] # Note: 注意 shape 的用法(广播机制)
    [-1., -1., -1.]]
    tf.constant([1,2,3,4,5,6], shape=[2,3]) => [[1, 2, 3]
    [4, 5, 6]]

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22

  • Sequences

    # 产生 num 个等距分布在 [start, stop] 间元素组成的数组,包括 start & stop (需为 float 类型)
    # increase by (stop - start) / (num - 1)
    tf.linspace(start, stop, num,, name=None)
    
  • # []为可选参数,步长 delta 默认为 1,start 默认为 0, limit 的值取不到,它产生一个数字序列
    tf.range([start], limit, delta=1, dtype=None, name=‘range’)

    # eg
    tf.range(start=3, limit=18, delta=3) # [3, 6, 9, 12, 15]
    tf.range(limit=5) # [0, 1, 2, 3, 4]

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11

  • Random Tensors

    # 正态分布,默认均值为0,标准差为1.0,数据类型为float32
    tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)
    
  • # 正态分布,但那些到均值的距离超过2倍标准差的随机数将被丢弃,然后重新抽取,直到取得足够数量的随机数为止, 随机数 x
    # 的取值范围是 [ m e a n − 2 ∗ s t d d e v , m e a n + 2 ∗ s t d d e v ] [mean - 2*stddev, mean + 2*stddev] [mean2stddev,mean+2stddev], 从而可以防止有元素与该张量中的其他元素显著不同的情况出现
    tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)

    # 产生在[minval, maxval)之间形状为 shape 的均匀分布, 默认是[0, 1)之间形状为 shape 的均匀分布
    tf.random_uniform(shape, minval=0.0, maxval=1, dtype=tf.float32, seed=None, name=None)

    # Randomly shuffles a tensor along its first dimension
    tf.random_shuffle(value, seed=None, name=None)

    # Randomly crops a tensor to a given size
    tf.random_crop(value, size, seed=None, name=None)
    # Note:If a dimension should not be cropped, pass the full size of that dimension.
    # For example, RGB images can be cropped with size = [crop_height, crop_width, 3]

    # Sets the graph-level random seed
    tf.set_random_seed(seed)
    # 1. To generate the same repeatable sequence for an op across sessions
    # set the seed for the op, a = tf.random_uniform([1], seed=1)
    # 2. To make the random sequences generated by all ops be repeatable across sessions
    # set a graph-level seed, tf.set_random_seed(1234)

    # 其它
    tf.multinomial(logits, num_samples, seed=None, name=None)
    tf.random_gamma(shape,alpha,beta=None,dtype=tf.float32,seed=None,name=None)

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34


    2、变量 Tensor 的创建

    I、Class tf.Variable()

    • 常用属性

      • dtype、shape、name
      • initial_value:Returns the Tensor used as the initial value for the variable.
      • initializer:The initializer operation for this variable,用于初始化此变量 sess.run(v.initializer)
      • op:The Operation that produces this tensor as an output.
      • device:The name of the device on which this tensor will be produced, or None.
      • graph:The Graph that contains this tensor.
    • 常用方法

      • eval(session=None):Evaluates this tensor in a Session. Returns A numpy ndarray with a copy of the value of this variable
      • get_shape():Alias of Tensor.shape.
      • set_shape(shape): It can be used to provide additional information about the shape of this tensor that cannot be inferred from the graph alone。
      • initialized_value():Returns the value of the initialized variable.
      • read_value():Returns the value of this variable, read in the current context.
      • assign(value, use_locking=False):Assigns a new value to the variable.
      • assign_add(delta, use_locking=False)
      • assign_sub(delta, use_locking=False)
    • Class Variable 定义

      # tf.constant 是 op,而 tf.Variable() 是一个类,初始化的对象有多个op
      var_obj = tf.Variable(
      	initial_value, 
      	dtype=None, 
      	name=None, 
      	trainable=True,
      	collections=None,
          validate_shape=True
      )
      

    # 初始化参数
    initial_value:可由 Python 内置数据类型提供,也可由常量 Tensor 的内置 op 来快速构建,但所有这些 op 都需要提供 shape

    trainable:指明了该变量是否可训练, 会加入 GraphKeys.TRAINABLE_VARIABLES collection 中去。

    collections: List of graph collections keys. The new variable is added to these collections. Defaults to [GraphKeys.GLOBAL_VARIABLES].

    validate_shape: If False, allows the variable to be initialized with a value of unknown shape. If True, the default, the shape of initial_value must be known.

    # 返回值
    变量实例对象(Tensor-like)

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21


    II、tf.get_variable()

    # Gets an existing variable with these parameters or create a new one
    tf.get_variable(
        name,
        shape=None,
        dtype=None,
        initializer=None,
        trainable=True,
        regularizer=None,
        collections=None,
        caching_device=None,
        partitioner=None,
        validate_shape=True,
        use_resource=None,
        custom_getter=None
    )
    

    # 初始化参数
    name: The name of the new or existing variable.
    shape: Shape of the new or existing variable.
    dtype: Type of the new or existing variable (defaults to DT_FLOAT).
    initializer: Initializer for the variable if one is created.

    trainable: If True also add the variable to the graph collection tf.GraphKeys.TRAINABLE_VARIABLES.

    regularizer: A (Tensor -> Tensor or None) function; the result of applying it on a newly created variable will be added to the collection tf.GraphKeys.REGULARIZATION_LOSSES and can be used for regularization.

    collections: List of graph collections keys to add the Variable to. Defaults to [GraphKeys.GLOBAL_VARIABLES] (see tf.Variable).

    # 返回值
    The created or existing Variable, 拥有变量类的所有属性和方法。

    # Note:
    >>> name 参数必须要指定,如果仅给出 shape 参数而未指定 initializer,那么它的值将由 tf.glorot_uniform_initializer 随机产生,数据类型为tf.float32;
    >>> 另外,initializer 可以为一个张量,这种情况下,变量的值和形状即为此张量的值和形状(就不必指定shape 了)
    >>> 此函数经常和 tf.variable_scope() 一起使用,产生共享变量

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36


    III、initializer 参数的初始化

    一般要在 tf.get_variable() 函数中指定**shape**,因为initializer要用到。

    • tf.constant_initializer()、tf.zeros_initializer()、tf.ones_initializer()

      tf.constant_initializer(
      	value=0, 
      	dtype=dtypes.float32, 
      	verify_shape=False
      )
      

    # 通常偏置项就是用它初始化的。由它衍生出的两个初始化方法:
    I、tf.zeros_initializer()
    II、tf.ones_initializer()

    init = tf.constant_initializer()
    x = tf.get_variable(name=‘v_x’, shape=[2, 3], initializer=init) # 必须指定shape
    sess.run(x.initializer)
    sess.run(x)
    >>> array([[ 0., 0., 0.],
    [ 0., 0., 0.]], dtype=float32)

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

  • tf.truncated_normal_initializer()、tf.random_normal_initializer()

    # 生成截断正态分布的随机数,方差一般选0.01等比较小的数
    tf.truncated_normal_initializer(
        mean=0.0,
        stddev=1.0,
        seed=None,
        dtype=tf.float32
    )
    
  • # 生成标准正态分布的随机数,方差一般选0.01等比较小的数
    tf.random_normal_initializer(
    mean=0.0,
    stddev=1.0,
    seed=None,
    dtype=tf.float32
    )

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

  • tf.random_uniform_initializer()、tf.uniform_unit_scaling_initializer()

    # 生成均匀分布的随机数
    tf.random_uniform_initializer(
        minval=0,
        maxval=None,
        seed=None,
        dtype=tf.float32
    )
    
  • # 和均匀分布差不多,只是这个初始化方法不需要指定最小最大值,是通过计算出来的
    # 它的分布区间为[-max_val, max_val]
    tf.uniform_unit_scaling_initializer(
    factor=1.0,
    seed=None,
    dtype=tf.float32
    )

    max_val = math.sqrt(3 / input_size) * self.factor
    # input size is obtained by multiplying W’s all dimensions but the last one
    # for a linear layer factor is 1.0, relu: ~1.43, tanh: ~1.15

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

  • tf.variance_scaling_initializer()

    tf.variance_scaling_initializer(
        scale=1.0,
        mode='fan_in',
        distribution='normal',
        seed=None,
        dtype=tf.float32
    )
    
  • # 初始化参数
    scale: Scaling factor (positive float).
    mode: One of “fan_in”, “fan_out”, “fan_avg”.
    distribution: Random distribution to use. One of “normal”, “uniform”.

    # 1、当 distribution=“normal” 的时候:
    生成 truncated normal distribution(截断正态分布)的随机数,其中mean = 0, stddev = sqrt(scale / n)
    n 的计算与 mode 参数有关:
    如果mode = “fan_in”, n 为输入单元的结点数
    如果mode = “fan_out”,n 为输出单元的结点数
    如果mode = “fan_avg”,n 为输入和输出单元结点数的平均值

    # 2、当distribution="uniform”的时候:
    生成均匀分布的随机数,假设分布区间为[-limit, limit],则limit = sqrt(3 * scale / n)

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22

  • tf.glorot_uniform_initializer()、tf.glorot_normal_initializer()

    为了使得在经过多层网络后,信号不被过分放大或过分减弱,我们尽可能保持每个神经元的输入和输出的方差一致! 从数学角度来讲,就是让权重满足均值为 0方差为 2 f a n i n + f a n o u t 2 f a n i n + f a n o u t 2 f a n i n + f a n o u t 2fanin+fanout2fanin+fanout \frac{2}{fan_{in} + fan_{out}} 2fanin+fanout2fanin+fanoutfanin+fanout2fanin+fanout2,随机分布的形式可以为均匀分布或者高斯分布

    # 又称 Xavier uniform initializer
    tf.glorot_uniform_initializer(
        seed=None,
        dtype=tf.float32
    )
    
  • # It draws samples from a uniform distribution within [a=-limit, b=limit]
    limit: sqrt(6 / (fan_in + fan_out))
    fan_in:the number of input units in the weight tensor
    fan_out:the number of output units in the weight tensor
    mean = (b + a) / 2
    stddev = (b - a)**2 /12

    # 又称 Xavier normal initializer
    tf.glorot_normal_initializer(
    seed=None,
    dtype=tf.float32
    )

    # It draws samples from a truncated normal distribution centered on 0 with
    # stddev = sqrt(2 / (fan_in + fan_out))
    fan_in:the number of input units in the weight tensor
    fan_out:the number of output units in the weight tensor

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23


    三、 Tensor 初始化及访问


    1、Constants 初始化

    • Constants are initialized when you call tf.constant, and their value can never change.

    2、Variables 初始化

    • Variables are not initialized when you call tf.Variable. To initialize all the variables in a TensorFlow program, you must explicitly call a special operation as follows:

      # 变量使用前一定要初始化
      init = tf.global_variables_initializer() # 初始化全部变量
      sess.run(init)
      

    # 使用变量的 initializer 属性初始化
    sess.run(v.initializer)

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

  • 用另一个变量的初始化值给当前变量初始化

    • 由于tf.global_variables_initializer()并行地初始化所有变量,所以直接使用另一个变量的初始化值来初始化当前变量会报错(因为你用另一个变量的值时,它没有被初始化)
    • 在这种情况下需要使用另一个变量的initialized_value()方法。你可以直接把已初始化的值作为新变量的初始值,或者把它当做tensor计算得到一个值赋予新变量。
      # Create a variable with a random value.
      weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="weights")
      
  • # Create another variable with the same value as ‘weights’.
    w2 = tf.Variable(weights.initialized_value(), name=“w2”)

    # Create another variable with twice the value of ‘weights’
    w_twice = tf.Variable(weights.initialized_value() * 0.2, name=“w_twice”)

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

  • 改变变量的值:通过 TF 中的赋值操作,update = tf.assign(old_variable, new_value) or v.assign(new_value)


  • 3、Tensor 的访问

    • 索引
      • 一维 Tensor 的索引和 Python 列表类似(可以逆序索引(arr[ : : -1])和负索引arr[-3])
      • 二维 Tensor 的索引: arr[i, j] == arr[i][j]
      • 在多维 Tensor 中,如果省略了后面的索引,则返回的对象会是一个维度低一点ndarray(但它含有高一级维度上的某条轴上的所有数据)
      • 条件索引:arr[conditon] # conditon 可以使用 & | 进行多条件组合
    • 切片
      • 一维 Tensor 的切片和 Python 列表类似
      • 二维 Tensor 的索引:arr[r1:r2, c1:c2:step] # 也可指定 step 进行切片

    四、Tensor 常用属性

    • dtype

      • tf.float32/64、tf.int8/16/32/64
      • tf.string、tf.bool、tf.complex64、tf.qint8
      • 不带小数点的数会被默认为tf.int32,带小数点的会默认为tf.float32
      • 可使用tf.cast(x, dtype, name=None)转换数据类型
    • shape

      • Tensor 的 shape 刻画了张量每一维的长度,张量的维数tf.rank(tensor)来表示
        TensorFlow 的数据模型-----张量(Tensor)_第2张图片

      • 取得Tensor shape 的值

        • 使用shape 属性或者 get_shape() 方法, This method returns a TensorShape object This can be used for debugging, and providing early error messages
        • 设计计算图时,使用tf.shape()函数, returns a tensor
        • Use batch_size = tf.shape(input)[0] to extract the batch dimension from a Tensor called input, and store it in a Tensor called batch_size.
      • 改变 Tensor shape

        • 使用tf.reshape(tensor, shape, name=None)函数:返回一个新的 tensor,shape 中的某一维可以用-1指定让 reshape 函数取自动计算此维的长度
        • 使用 Tensor.set_shape() 方法:In some cases, the inferred shape may have unknown dimensions. If the caller has additional information about the values of these dimensions, Tensor.set_shape() can be used to augment the inferred shape.
          TensorFlow 的数据模型-----张量(Tensor)_第3张图片
      • 将 Tensor shape 转化为 listTensor.shape.as_list()

      • passing in the value None as a shape (instead of using a list/tuple that contains None), will tell TensorFlow to allow a tensor of any shape

    • name

      • eg: w1 = tf.Variable(tf.random_normal([2, 3], stddev=1), name='weight1'), 这里面定义了变量 w1,为什么又给了它一个 name='weight1'? 这个 tensor 中的 name 属性和其变量名有什么区别呢?为什么要这样做呢?
      • 答:w1是代码中的变量名(标识符),代码中都用这个。name='weight1'这个是参数名(权重),在参数存储或读取的时候使用,方便在其它环境(C++等)中部署。还有个作用是跟 scope 配合使用的,用于参数共享
    • op

      • The Operation that produces this tensor as an output.
      • 在上面 name 的例子中, tf.Operation named: w1.op.name='weight1' ,tf.Tensor named: w1.name='weight1:0'
      • Note that: tf.Tensor objects are implicitly named after the tf.Operation that produces the tensor as output. A tensor name has the form : where:
        • :节点的名称
        • :表示当前张量来自节点的第几个输出
    • device

      • The name of the device on which this tensor will be produced, or None.
    • graph

      • The Graph that contains this tensor.

    五、Tensor 常用方法

    • eval(feed_dict=None, session=None)
      • Evaluates this tensor in a Session,通常需要指定 session=sess
      • 当在交互式环境中使用 sess = tf.InteractiveSession(),系统会自动将生成的会话注册为默认会话,此时就不需要指定 session=sess
    • get_shape()
      • Alias of Tensor.shape
    • set_shape(shape)
      • It can be used to provide additional information about the shape of this tensor that cannot be inferred from the graph alone
        _, image_data = tf.TFRecordReader(...).read(...)
        image = tf.image.decode_png(image_data, channels=3)
        

    # The height and width dimensions of image are data dependent, and
    # cannot be computed without executing the op.
    print(image.shape)
    ==> TensorShape([Dimension(None), Dimension(None), Dimension(3)])

    # We know that each image in this dataset is 28 x 28 pixels.
    image.set_shape([28, 28, 3])
    print(image.shape)
    ==> TensorShape([Dimension(28), Dimension(28), Dimension(3)])

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12


    六、Tensor 变换常用方法

    1.Casting:数据类型转换

    tf.string_to_number(string_tensor, out_type=None, name=None)
    tf.to_double(x, name='ToDouble')
    tf.to_float(x, name='ToFloat')
    tf.to_int32(x, name='ToInt32')
    tf.to_int64(x, name='ToInt64')
    

    tf.cast(x, dtype, name=None) # Casts a tensor to a new type
    # tensor a is [1.8, 2.2], dtype=tf.float
    tf.cast(a, tf.int32) ==> [1, 2] # dtype=tf.int32

    # 其它
    tf.bitcast
    tf.saturate_cast
    tf.to_bfloat16

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16


    2. Shapes and Shaping:取得张量形状和改变张量形状

    # 改变 Tensor 的形状
    tf.reshape(tensor, shape, name=None)
    # Flatten:令 shape=[-1] 即可
    # Reshape:shape 乘积不变即可,当某一维传入-1时,它会自动推得此维度的大小
    

    # 转置
    tf.transpose(a, perm=None, name=‘transpose’)

    # 返回 tensor 各个维度的大小
    tf.shape(input, name=None)
    # ‘t’ is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]
    sess.run(tf.shape(t)) ==> array([2, 2, 3], dtype=int32) # 必须要 run 才能得出结果
    # 亦可以使用 TF 变量对象 Var 的get_shape() 方法来实现Var.get_shape()

    # 返回 tensor 中元素的总数
    tf.size(input, name=None)

    # 返回 Tensor 的维度(轴)的个数,类似于 Numpy 中的 ndim 属性
    tf.rank(input, name=None)

    # inserts a dimension of 1 into a tensor’s shape
    tf.expand_dims(
    input,
    axis=None,
    name=None,
    )
    # 例1,‘t’ is a tensor of shape [2]
    tf.shape(tf.expand_dims(t, 0)) # [1, 2]
    tf.shape(tf.expand_dims(t, 1)) # [2, 1]
    tf.shape(tf.expand_dims(t, -1)) # [2, 1],支持负索引

    # 例2,‘t2’ is a tensor of shape [2, 3, 5]
    tf.shape(tf.expand_dims(t2, 0)) # [1, 2, 3, 5], make it a batch of 1 image
    tf.shape(tf.expand_dims(t2, 2)) # [2, 3, 1, 5]
    tf.shape(tf.expand_dims(t2, 3)) # [2, 3, 5, 1]

    # 若 axis 没指定,则移除 shape 中所有的 1,若指定某个轴,则只移除相应位置shape 中的 1
    tf.squeeze(
    input,
    axis=None,
    name=None,
    )
    # 例1,‘t’ is a tensor of shape [1, 2, 1, 3, 1, 1]
    tf.shape(tf.squeeze(t)) # [2, 3]

    # 例2, remove specific size 1 dimensions
    tf.shape(tf.squeeze(t, axis=[2, 4])) # [1, 2, 3, 1]

    # 其它
    tf.broadcast_dynamic_shape
    tf.broadcast_static_shape
    tf.shape_n
    tf.meshgrid

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60


    3. Slicing and Joining:切片和连接

    • 切片:可使用 TF 函数实现,也可使用 python 原始切片方式实现(切出 1 份)

      tf.slice(input_, begin, size, name=None)
      # begin(zero-based):切片的起点坐标,一般用 list 来表示
      # size(one-based):切出多大,size[i] is the number of elements of the 'i'th dimension of input that you want to slice
      # If size[i] is -1, all remaining elements in dimension i are included in the slice
      

    For example:
    # ‘input’ is [[[1, 1, 1], [2, 2, 2]],
    # [[3, 3, 3], [4, 4, 4]],
    # [[5, 5, 5], [6, 6, 6]]]
    tf.slice(input, [1, 0, 0], [1, 1, 3]) > [[[3, 3, 3]]]
    tf.slice(input, [1, 0, 0], [1, 2, 3]) > [[[3, 3, 3],
    [4, 4, 4]]]
    tf.slice(input, [1, 0, 0], [2, 1, -1]) ==> [[[3, 3, 3]],
    [[5, 5, 5]]]
    # 亦可以使用 python 原始切片方式实现,eg: input[1, 0:2, 0:3]和第三个效果相同

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

  • 分割:沿着坐标轴将 Tensor 分割成尺寸相同的 n 等份或者尺寸不同的 n 份

    tf.split(value, num_or_size_splits, axis=0, num=None, name='split')
    # num_or_size_splits 
    integer:splits value along dimension axis into integer smaller tensors
    list:plits value along dimension axis into len(list) smaller tensors.等份每一份的大小是list[i] 
    
  • For example:
    # ‘value’ is a tensor with shape [5, 30]
    # Split ‘value’ into 3 tensors with sizes [4, 15, 11] along dimension 1
    split0, split1, split2 = tf.split(value, [4, 15, 11], 1)
    tf.shape(split0) > [5, 4]
    tf.shape(split1) > [5, 15]
    tf.shape(split2) > [5, 11]
    # Split ‘value’ into 3 tensors along dimension 1
    split0, split1, split2 = tf.split(value, num_or_size_splits=3, axis=1)
    tf.shape(split0) > [5, 10]

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

  • 连接:沿着某坐标轴连接 N 个张量(Numpy 连接传入的是 tuple, 此处为 list )

    tf.concat(values, axis, name='concat')  # 维度不变 
    For example:
    t1 = [[1, 2, 3], [4, 5, 6]]
    t2 = [[7, 8, 9], [10, 11, 12]]
    tf.concat([t1, t2], 0) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
    tf.concat([t1, t2], 1) ==> [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]
    
  • # tensor t3 with shape [2, 3]
    # tensor t4 with shape [2, 3]
    tf.shape(tf.concat([t3, t4], 0)) > [4, 3]
    tf.shape(tf.concat([t3, t4], 1)) > [2, 6]

    tf.stack(values, axis, name=‘concat’) # 维度+1
    # Stacks a list of rank-R tensors into one rank-(R+1) tensor
    # Given a list of length N=2 of tensors of shape (3, 3);
    if axis 0 then the output tensor will have the shape (N, 3, 3).
    if axis 1 then the output tensor will have the shape (3, N, 3).
    if axis == 1 then the output tensor will have the shape (3, 3, N).

    a = np.array([[1, 2, 3],
    [4, 5, 6],
    [7, 8, 9]])

    b = np.array([[ 2, 4, 6],
    [ 8, 10, 12],
    [14, 16, 18]])

    # Note: 做 stack 之前把 a, b 的维度+1变为(1, 3, 3)
    # 沿着 x 轴(垂直向下)连接 a, b 的第 0 维元素
    sess.run(tf.stack([a,b], axis=0))
    array([[[ 1, 2, 3],
    [ 4, 5, 6],
    [ 7, 8, 9]],

       [[ 2,  4,  6],
        [ 8, 10, 12],
        [14, 16, 18]]])
    

    # 沿着 y 轴(水平向右)连接 a, b 的第 1 维元素
    sess.run(tf.stack([a,b], axis=1))
    array([[[ 1, 2, 3],
    [ 2, 4, 6]],

       [[ 4,  5,  6],
        [ 8, 10, 12]],
    
       [[ 7,  8,  9],
        [14, 16, 18]]])
    

    # 沿着 z 轴(竖直向上)连接 a, b 的第 2 维元素
    sess.run(tf.stack([a,b], axis=2))
    array([[[ 1, 2],
    [ 2, 4],
    [ 3, 6]],

       [[ 4,  8],
        [ 5, 10],
        [ 6, 12]],
    
       [[ 7, 14],
        [ 8, 16],
        [ 9, 18]]])
    

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63

    • 补零
    tf.pad(tensor, paddings, mode='CONSTANT', name=None)
    paddings: is an integer tensor with shape [n, 2],n是 tensor 的维度
    For example:
    # 't' is [[1, 2, 3], [4, 5, 6]].
    # 'paddings' is [[1, 1,], [2, 2]].
    # paddings[0, 0/1]: 沿着第 0 维(x轴)在 tensor 上方/下方补 1 圈零
    # paddings[1, 0/1]: 沿着第 1 维(y轴)在 tensor 左方/右方补 2 圈零
    tf.pad(t, paddings, "CONSTANT") ==> [[0, 0, 0, 0, 0, 0, 0],
    	                                 [0, 0, 1, 2, 3, 0, 0],
                                         [0, 0, 4, 5, 6, 0, 0],
                                         [0, 0, 0, 0, 0, 0, 0]]
    
       
       
       
       
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
  • one_hot 向量的生成

    tf.one_hot(indices, depth, on_value=1, off_value=0, axis=-1, dtype=None, name=None)
    # 将 indices 中的每个元素 j 扩展成一个深度为 depth 的向量,输出维度+1
    # 此向量中索引位置 j 的取值为 1,其余位置的取值为 0 
    # If indices is a scalar the output shape will be a vector of length depth
    
  • # If indices is a vector of length features, the output shape will be:
    features x depth if axis -1
    depth x features if axis 0

    # If indices is a matrix (batch) with shape [batch, features], the output shape will be:
    batch x features x depth if axis -1
    batch x depth x features if axis 1
    depth x batch x features if axis == 0

    # 使用onehot的直接原因是:现在多分类cnn网络的输出通常是softmax层,而它的输出是一个概率分布
    # 从而要求输入的标签也以概率分布的形式出现,进而计算交叉熵之类

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

  • tf.gather(params, indices, axis=0)
    TensorFlow 的数据模型-----张量(Tensor)_第4张图片

  • 其它

    tf.extract_image_patches
    tf.strided_slice
    tf.tile
    tf.parallel_stack
    tf.unstack
    tf.reverse_sequence
    tf.reverse
    tf.reverse_v2
    tf.space_to_batch_nd
    tf.space_to_batch
    tf.required_space_to_batch_paddings
    tf.batch_to_space_nd
    tf.batch_to_space
    tf.space_to_depth
    tf.depth_to_space
    tf.gather_nd
    tf.unique_with_counts
    tf.scatter_nd
    tf.dynamic_partition
    tf.dynamic_stitch
    tf.boolean_mask
    tf.sequence_mask
    tf.dequantize
    tf.quantize_v2
    tf.quantized_concat
    tf.setdiff1d
    
        
        
        
        
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26

  • 七、Numpy VS TensorFLow

    • 相同点:Both are N-d array libraries,创建、访问、常用属性和方法都非常相似
    • 不同点
      • Numpy has Ndarray support, but doesn’t offer methods to create tensor functions and automatically compute derivatives (+ no GPU support)
      • Numpy 方法中 shape 通常传入的是一个 tuple, 而 Tensor 中shape 通常传入一个 list
        TensorFlow 的数据模型-----张量(Tensor)_第5张图片

    八、参考资料

    1、https://www.tensorflow.org/programmers_guide/tensors
    2、https://www.tensorflow.org/api_docs/python/tf/Tensor
    3、https://www.tensorflow.org/api_guides/python/constant_op
    4、https://www.tensorflow.org/api_guides/python/state_ops
    5、https://www.tensorflow.org/api_guides/python/array_ops
    6、https://cs224d.stanford.edu/lectures/CS224d-Lecture7.pdf
    7、tensorflow 1.0 学习:参数初始化(initializer)
    8、https://github.com/tensorflow/tensorflow/blob/r1.4/tensorflow/python/ops/init_ops.py

    你可能感兴趣的:(tensorflow)