- [特殊字符] 实时数据洪流突围战:Flink+Paimon实现毫秒级分析的架构革命(附压测报告)——日均百亿级数据处理成本降低60%的工业级方案
Lucas55555555
flink大数据
引言:流批一体的时代拐点据阿里云2025白皮书显示,实时数据处理需求年增速达240%,但传统Lambda架构资源消耗占比超运维成本的70%。某电商平台借助Flink+Paimon重构实时数仓后,端到端延迟从分钟级压缩至800ms,计算资源节省5.6万核/月。技术红利窗口期:2025年ApachePaimon1.0正式发布,支持秒级快照与湖仓一体,成为替代Iceberg的新范式一、痛点深挖:实时数仓
- Flink 2.0 DataStream算子全景
Edingbrugh.南空
大数据flinkflink人工智能
在实时流处理中,ApacheFlink的DataStreamAPI算子是构建流处理pipeline的基础单元。本文基于Flink2.0,聚焦算子的核心概念、分类及高级特性。一、算子核心概念:流处理的"原子操作1.数据流拓扑(StreamTopology)每个Flink应用可抽象为有向无环图(DAG),由源节点(Source)、算子节点(Operator)和汇节点(Sink)构成,算子通过数据流(S
- FlinkSQL 自定义函数详解
Tit先生
基础flinksql大数据java
FlinkSQL函数详解自定义函数除了内置函数之外,FlinkSQL还支持自定义函数,我们可以通过自定义函数来扩展函数的使用FlinkSQL当中自定义函数主要分为四大类:1.ScalarFunction:标量函数特点:每次只接收一行的数据,输出结果也是1行1列典型的标量函数如:upper(str),lower(str),abs(salary)2.TableFunction:表生成函数特点:运行时每
- Flink自定义函数之聚合函数(UDAGG函数)
土豆马铃薯
Flinkflink大数据
1.聚合函数概念聚合函数:将一个表的一个或多个行并且具有一个或多个属性聚合为标量值。聚合函数理解:假设一个关于饮料的表。表里面有三个字段,分别是id、name、price,表里有5行数据。假设你需要找到所有饮料里最贵的饮料的价格,即执行一个max()聚合。你需要遍历所有5行数据,而结果就只有一个数值。2.聚合函数实现聚合函数主要通过扩展AggregateFunction类实现。AggregateF
- Flink时间窗口详解
bxlj_jcj
Flinkflink大数据
一、引言在大数据流处理的领域中,Flink的时间窗口是一项极为关键的技术,想象一下,你要统计一个电商网站每小时的订单数量。由于订单数据是持续不断产生的,这就形成了一个无界数据流。如果没有时间窗口的概念,你就需要处理无穷无尽的数据,难以进行有效的统计分析。而时间窗口的作用,就是将这无界的数据流按照时间维度切割成一个个有限的“数据块”,方便我们对这些数据进行处理和分析。比如,我们可以定义一个1小时的时
- Flink DataStream API详解(一)
bxlj_jcj
Flinkflink大数据
一、引言Flink的DataStreamAPI,在流处理领域大显身手的核心武器。在很多实时数据处理场景中,如电商平台实时分析用户购物行为以实现精准推荐,金融领域实时监控交易数据以防范风险,DataStreamAPI都发挥着关键作用,能够对源源不断的数据流进行高效处理和分析。接下来,就让我们一起深入探索FlinkDataStreamAPI。二、DataStream编程基础搭建在开始使用FlinkDa
- flink自定义函数
逆风飞翔的小叔
flink入门到精通flink大数据bigdata
前言在很多情况下,尽管flink提供了丰富的转换算子API可供开发者对数据进行各自处理,比如map(),filter()等,但在实际使用的时候仍然不能满足所有的场景,这时候,就需要开发人员基于常用的转换算子的基础上,做一些自定义函数的处理1、来看一个常用的操作原始待读取的文件核心代码importorg.apache.flink.api.common.functions.FilterFunction
- Flink自定义函数的常用方式
飞Link
Waterflinkjava大数据
一、实现Flink提供的接口//自定义函数classMyMapFunctionimplementsMapFunction{publicIntegermap(Stringvalue){returnInteger.parseInt(value
- Flink DataStream API详解(二)
一、引言咱两书接上回,上一篇文章主要介绍了DataStreamAPI一些基本的使用,主要是针对单数据流的场景下,但是在实际的流处理场景中,常常需要对多个数据流进行合并、拆分等操作,以满足复杂的业务需求。Flink的DataStreamAPI提供了一系列强大的多流转换算子,如union、connect和split等,下面我们来详细了解一下它们的功能和用法。二、多流转换2.1union算子union算
- 【Kafka】Failed to send data to Kafka: Expiring 30 record(s) for xxx 732453 ms has passed since last
九师兄
kafkabigdatazookeeper
文章目录1.美图2.背景2.尝试方案13.尝试解决24.场景再现25.场景46.场景57.场景78.场景8M.拓展本文为博主九师兄(QQ:541711153欢迎来探讨技术)原创文章,未经允许博主不允许转载。1.美图问题与【Flink】Flink写入kafka报错FailedtosenddatatoKafka:Expiring4record(s)for20001mshaspassed重复了。2.背景
- 【Flink】flink Kafka报错 : Failed to send data to Kafka: This server is not the leader for that topic-pa
九师兄
flinkkafka大数据
1.背景出现这个问题的背景请参考:【Kafka】FailedtosenddatatoKafka:Expiring30record(s)forxxx732453mshaspassedsincelast[2020-09-0513:16:09
- 安全运维的 “五层防护”:构建全方位安全体系
KKKlucifer
安全运维
在数字化运维场景中,异构系统复杂、攻击手段隐蔽等挑战日益突出。保旺达基于“全域纳管-身份认证-行为监测-自动响应-审计溯源”的五层防护架构,融合AI、零信任等技术,构建全链路安全运维体系,以下从技术逻辑与实践落地展开解析:第一层:全域资产纳管——筑牢安全根基挑战云网基础设施包含分布式计算(Hadoop/Spark)、数据流处理(Storm/Flink)等异构组件,通信协议繁杂,传统方案难以全面纳管
- kafka单个生产者向具有多个partition的topic写数据(写入分区策略)
最近碰到生产环境现象一个flink程序单并行度(一个生产者),对应topic为8分区。每个分区都能消费到生产出的数据。整理知识点如下生产者写入消息到topic,kafka将依据不同的策略将数据分配到不同的分区中1.轮询分区策略2.随机分区策略3.按key分区分配策略4.自定义分区策略1.1轮询分区策略默认的策略,也是使用最多的策略,可以最大限度的保证所有消息平均分配到分区里面如果在生产消息时,ke
- 云原生--微服务、CICD、SaaS、PaaS、IaaS
青秋.
云原生docker云原生微服务kubernetesserverlessservice_meshci/cd
往期推荐浅学React和JSX-CSDN博客一文搞懂大数据流式计算引擎Flink【万字详解,史上最全】-CSDN博客一文入门大数据准流式计算引擎Spark【万字详解,全网最新】_大数据spark-CSDN博客目录1.云原生概念和特点2.常见云模式3.云对外提供服务的架构模式3.1IaaS(Infrastructure-as-a-Service)3.2PaaS(Platform-as-a-Servi
- Apache Iceberg数据湖基础
Aurora_NeAr
apache
IntroducingApacheIceberg数据湖的演进与挑战传统数据湖(Hive表格式)的缺陷:分区锁定:查询必须显式指定分区字段(如WHEREdt='2025-07-01')。无原子性:并发写入导致数据覆盖或部分可见。低效元数据:LIST操作扫描全部分区目录(云存储成本高)。Iceberg的革新目标:解耦计算引擎与存储格式(支持Spark/Flink/Trino等);提供ACID事务、模式
- Flink ClickHouse 连接器:实现 Flink 与 ClickHouse 无缝对接
Edingbrugh.南空
大数据flinkflinkclickhouse大数据
引言在大数据处理领域,ApacheFlink是一款强大的流处理和批处理框架,而ClickHouse则是一个高性能的列式数据库,专为在线分析处理(OLAP)场景设计。FlinkClickHouse连接器为这两者之间搭建了一座桥梁,使得用户能够在Flink中方便地与ClickHouse数据库进行交互,实现数据的读写操作。本文将详细介绍FlinkClickHouse连接器的相关内容,包括其特点、使用方法
- 大数据技术之Flink
第1章Flink概述1.1Flink是什么1.2Flink特点1.3FlinkvsSparkStreaming表Flink和Streaming对比FlinkStreaming计算模型流计算微批处理时间语义事件时间、处理时间处理时间窗口多、灵活少、不灵活(窗口必须是批次的整数倍)状态有没有流式SQL有没有1.4Flink的应用场景1.5Flink分层API第2章Flink快速上手2.1创建项目在准备
- Hadoop核心组件最全介绍
Cachel wood
大数据开发hadoop大数据分布式spark数据库计算机网络
文章目录一、Hadoop核心组件1.HDFS(HadoopDistributedFileSystem)2.YARN(YetAnotherResourceNegotiator)3.MapReduce二、数据存储与管理1.HBase2.Hive3.HCatalog4.Phoenix三、数据处理与计算1.Spark2.Flink3.Tez4.Storm5.Presto6.Impala四、资源调度与集群管
- flink数据同步mysql到hive_基于Canal与Flink实现数据实时增量同步(二)
背景在数据仓库建模中,未经任何加工处理的原始业务层数据,我们称之为ODS(OperationalDataStore)数据。在互联网企业中,常见的ODS数据有业务日志数据(Log)和业务DB数据(DB)两类。对于业务DB数据来说,从MySQL等关系型数据库的业务数据进行采集,然后导入到Hive中,是进行数据仓库生产的重要环节。如何准确、高效地把MySQL数据同步到Hive中?一般常用的解决方案是批量
- Flink OceanBase CDC 环境配置与验证
Edingbrugh.南空
运维大数据flinkflinkoceanbase大数据
一、OceanBase数据库核心配置1.环境准备与版本要求版本要求:OceanBaseCE4.0+或OceanBaseEE2.2+组件依赖:需部署LogProxy服务(社区版/企业版部署方式不同)兼容模式:支持MySQL模式(默认)和Oracle模式2.创建用户与权限配置在sys租户创建管理用户(社区版示例):--连接sys租户(默认端口2881)mysql-h127.0.0.1-P2881-ur
- Flink MongoDB CDC 环境配置与验证
Edingbrugh.南空
运维大数据flinkflinkmongodb大数据
一、MongoDB数据库核心配置1.环境准备与集群要求MongoDBCDC依赖ChangeStreams特性,需满足以下条件:版本要求:MongoDB≥3.6集群模式:副本集(ReplicaSet)或分片集群(ShardedCluster)存储引擎:WiredTiger(默认自3.2版本起)副本集协议:pv1(MongoDB4.0+默认)验证集群配置:#连接MongoDBshellmongo--h
- Flink将数据流写入Kafka,Redis,ES,Mysql
浅唱战无双
flinkmysqlesrediskafka
Flink写入不同的数据源写入到Mysql写入到ES向Redis写入向kafka写入导入公共依赖org.slf4jslf4j-simple1.7.25compileorg.apache.flinkflink-java1.10.1org.apache.flinkflink-streaming-java_2.121.10.1写入到Mysql导入依赖mysqlmysql-connector-java5.
- Flink TiDB CDC 环境配置与验证
一、TiDB数据库核心配置1.启用TiCDC服务确保TiDB集群已部署TiCDC组件(版本需兼容FlinkCDC3.0.1),并启动同步服务:#示例:启动TiCDC捕获changefeedcdcclichangefeedcreate\--pd="localhost:2379"\--sink-uri="blackhole://"\--changefeed-id="flink-cdc-demo"2.验
- Flink CDC支持Oracle RAC架构CDB+PDB模式的实时数据同步吗,可以上生产环境吗
智海观潮
Flinkflinkcdcoracleflink数据同步大数据
众所周知,FlinkCDC是一个流数据集成工具,支持多种数据源的实时数据同步,包括大家所熟知的MySQL,MongoDB等。原本是作为Flink的子项目运行,后来捐献给Apache基金会,底层实现比较依赖于Flink生态。具体到数据同步底层实现则相对比较依赖于Debezium。对于Oracle实时数据同步有需求的用户来说,经常会有疑问,比如FlinkCDC支持Oracle实时数据同步吗,可以应用到
- Flink Oracle CDC 环境配置与验证
一、Oracle数据库核心配置详解1.启用归档日志(ArchivingLog)OracleCDC依赖归档日志获取增量变更数据,需按以下步骤启用:非CDB数据库配置:--以DBA身份连接数据库CONNECTsys/passwordASSYSDBA;--配置归档目标路径和大小ALTERSYSTEMSETdb_recovery_file_dest_size=10G;ALTERSYSTEMSETdb_re
- flink读取kafka的数据处理完毕写入redis
JinVijay
flinkkafkaredisflink
/**从Kafka读取数据处理完毕写入Redis*/publicclassKafkaToRedis{publicstaticvoidmain(String[]args)throwsException{StreamExecutionEnvironmentenv=StreamExecutionEnvironment.getExecutionEnvironment();//开启checkpointing
- 阿里云Flink:开启大数据实时处理新时代
云资源服务商
阿里云大数据云计算
走进阿里云Flink在大数据处理的广袤领域中,阿里云Flink犹如一颗璀璨的明星,占据着举足轻重的地位。随着数据量呈指数级增长,企业对数据处理的实时性、高效性和准确性提出了前所未有的挑战。传统的数据处理方式逐渐难以满足这些严苛的需求,而阿里云Flink凭借其卓越的特性和强大的功能,成为众多企业实现数据价值挖掘与业务创新的关键技术。它不仅继承了开源Flink的优秀基因,还融入了阿里云自主研发的创新技
- 大数据集群架构hadoop集群、Hbase集群、zookeeper、kafka、spark、flink、doris、dataeas(二)
争取不加班!
hadoophbasezookeeper大数据运维
zookeeper单节点部署wget-chttps://dlcdn.apache.org/zookeeper/zookeeper-3.8.4/apache-zookeeper-3.8.4-bin.tar.gz下载地址tarxfapache-zookeeper-3.8.4-bin.tar.gz-C/data/&&mv/data/apache-zookeeper-3.8.4-bin//data/zoo
- Hadoop、Spark、Flink 三大大数据处理框架的能力与应用场景
一、技术能力与应用场景对比产品能力特点应用场景Hadoop-基于MapReduce的批处理框架-HDFS分布式存储-容错性强、适合离线分析-作业调度使用YARN-日志离线分析-数据仓库存储-T+1报表分析-海量数据处理Spark-基于内存计算,速度快-支持批处理、流处理(StructuredStreaming)-支持SQL、ML、图计算等-支持多语言(Scala、Java、Python)-近实时处
- 数据同步工具对比:Canal、DataX与Flink CDC
智慧源点
大数据flink大数据
在现代数据架构中,数据同步是构建数据仓库、实现实时分析、支持业务决策的关键环节。Canal、DataX和FlinkCDC作为三种主流的数据同步工具,各自有着不同的设计理念和适用场景。本文将深入探讨这三者的技术特点、使用场景以及实践中的差异,帮助开发者根据实际需求选择合适的工具。1.工具概述1.1CanalCanal是阿里巴巴开源的一款基于MySQL数据库增量日志(binlog)解析的组件,主要用于
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">