Java集合类详解(5) -- 基于JDK1.8的LinkedHashMap详解

LinkedHashMap是在HashMap的基础上构建的,若我们需要按照元素插入的顺序来访问元素,相信此时LinkedHashMap能够做到HashMap做不到的事。

已知HashMap的内部结构为数组 + 单链表 + 红黑树
Java集合类详解(5) -- 基于JDK1.8的LinkedHashMap详解_第1张图片
LinkedHashMap会在HashMap的基础上,在内部维护一个双向链表,用于访问元素,其结构为数组 + 单链表 + 红黑树 + 双向链表.
Java集合类详解(5) -- 基于JDK1.8的LinkedHashMap详解_第2张图片

LinkedHashMap的定义

public class LinkedHashMap<K,V>  extends HashMap<K,V> implements Map<K,V>

LinkedHashMap继承了HashMap!LinkedHashMap继承了HashMap!LinkedHashMap继承了HashMap!重要的事情说三遍,LinkedHashMap实际上是在HashMap的基础上扩展的。

LinkedHashMap的属性

	//内部结构
	static class Entry<K,V> extends HashMap.Node<K,V> {
        Entry<K,V> before, after;
        Entry(int hash, K key, V value, Node<K,V> next) {
            super(hash, key, value, next);
        }
    }

    // 链表头结点
    transient LinkedHashMap.Entry<K,V> head;

    // 链表尾结点
    transient LinkedHashMap.Entry<K,V> tail;

    // 访问顺序
    final boolean accessOrder;

我们来讲讲访问顺序,默认情况下,LinkedHashMap 是按插入顺序维护链表。不过我们可以在初始化 LinkedHashMap,指定 accessOrder 参数为 true,即可让它按访问顺序维护链表。若我们选择了访问顺序,当我们访问元素时,需要将被访问的节点移动到链表的尾部。

Entry 的继承体系

分析键值对节点的继承体系对我们讲解下面内容是有帮助的,我们来看继承体系结构图,相信可以一目了然
Java集合类详解(5) -- 基于JDK1.8的LinkedHashMap详解_第3张图片

LinkedHashMap的构造函数

public LinkedHashMap() {
        super();
        accessOrder = false;
}
public LinkedHashMap(int initialCapacity,float loadFactor,boolean accessOrder) {
    super(initialCapacity, loadFactor);
    this.accessOrder = accessOrder;
}

此构造函数可以控制访问顺序

LinkedHashMap的操作

插入函数

Map 类型的集合类是通过 put(K,V) 方法插入键值对,LinkedHashMap 本身并没有覆写父类的 put 方法,而是直接使用了父类的实现。但在 HashMap 中,put 方法插入的是 HashMap 内部类 Node 类型的节点,该类型的节点并不具备与 LinkedHashMap 内部类 Entry 及其子类型节点组成链表的能力,那LinkedHashMap是怎么做的呢?下面让我们走进代码

	//hash(key)就是上面讲的hash方法,对其进行了第一步和第二步处理
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    /**
     * 
     * @param hash 索引的位置
     * @param key  键
     * @param value  值
     * @param onlyIfAbsent true 表示不要更改现有值
     * @param evict false表示table处于创建模式
     * @return
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
            boolean evict) {
         Node<K,V>[] tab; Node<K,V> p; int n, i;
         //如果table为null或者长度为0,则进行初始化
         //resize()方法本来是用于扩容,由于初始化没有实际分配空间,这里用该方法进行空间分配,后面会详细讲解该方法
         if ((tab = table) == null || (n = tab.length) == 0)
             n = (tab = resize()).length;
         //注意:这里用到了前面讲解获得key的hash码的第三步,取模运算,下面的if-else分别是 tab[i] 为null和不为null
         if ((p = tab[i = (n - 1) & hash]) == null)
             tab[i] = newNode(hash, key, value, null);//tab[i] 为null,直接将新的key-value插入到计算的索引i位置
         else {//tab[i] 不为null,表示该位置已经有值了
             Node<K,V> e; K k;
             if (p.hash == hash &&
                 ((k = p.key) == key || (key != null && key.equals(k))))
                 e = p;//节点key已经有值了,直接用新值覆盖
             //该链是红黑树
             else if (p instanceof TreeNode)
                 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
             //该链是链表
             else {
                 for (int binCount = 0; ; ++binCount) {
                     if ((e = p.next) == null) {
                         p.next = newNode(hash, key, value, null);
                         //链表长度大于8,转换成红黑树
                         if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                             treeifyBin(tab, hash);
                         break;
                     }
                     //key已经存在直接覆盖value
                     if (e.hash == hash &&
                         ((k = e.key) == key || (key != null && key.equals(k))))
                         break;
                     p = e;
                 }
             }
             if (e != null) { // existing mapping for key
                 V oldValue = e.value;
                 if (!onlyIfAbsent || oldValue == null)
                     e.value = value;
                 afterNodeAccess(e);
                 return oldValue;
             }
         }
         ++modCount;//用作修改和新增快速失败
         if (++size > threshold)//超过最大容量,进行扩容
             resize();
         afterNodeInsertion(evict);
         return null;
    }

在我之前的文章介绍过,这是HashMap 的插入操作,但LinkedHashMap并没有重写该函数,而是重写了一部分内部函数

//HashMap的实现
Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
    return new Node<>(hash, key, value, next);
}
//LinkedHashMap的实现
Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
    LinkedHashMap.Entry<K,V> p =
        new LinkedHashMap.Entry<K,V>(hash, key, value, e);
    // 将 Entry 接在双向链表的尾部
    linkNodeLast(p);
    return p;
}
linkNodeLast
private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
    LinkedHashMap.Entry<K,V> last = tail;
    tail = p;
    
    if (last == null)
        head = p;
    else {
        p.before = last;
        last.after = p;
    }
}

linkNodeLast用于在双向链表尾部插入新节点

LinkedHashMap的newNode函数与HashMap 相比,增加了对双向链表的操作

我们之前讲过,下面两个方法在HashMap是空实现

void afterNodeAccess(Node<K,V> p) { }
void afterNodeInsertion(boolean evict) { }

但是为了维护双向链表,LinkedHashMap重写了这两个方法

void afterNodeAccess(Node<K,V> e) {
    LinkedHashMap.Entry<K,V> last;
    if (accessOrder && (last = tail) != e) {
        LinkedHashMap.Entry<K,V> p =
            (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
        p.after = null;
        
        if (b == null)
            head = a;
        else
            b.after = a;
            
        if (a != null)
            a.before = b;
        else
            last = b;
    
        if (last == null)
            head = p;
        else {
            p.before = last;
            last.after = p;
        }
        tail = p;
        ++modCount;
    }
}

该方法将节点e转移到双向链表的末尾

void afterNodeInsertion(boolean evict) { 
    LinkedHashMap.Entry<K,V> first;
    // 根据条件判断是否移除最近最少被访问的节点
    if (evict && (first = head) != null && removeEldestEntry(first)) {
        K key = first.key;
        removeNode(hash(key), key, null, false, true);
    }
}

该方法实现据条件判断是否移除最近最少被访问的节点

我们再来看看removeEldestEntry的实现

// 移除最近最少被访问条件之一,通过覆盖此方法可实现不同策略的缓存
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
    return false;
}

当我们基于 LinkedHashMap 实现缓存时,通过覆写removeEldestEntry方法可以实现自定义策略的 LRU 缓存。比如我们可以根据节点数量判断是否移除最近最少被访问的节点,或者根据节点的存活时间判断是否移除该节点等。

删除操作

跟插入操作一样,LinkedHashMap直接使用父类的删除操作

	public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }
    
    final Node<K,V> removeNode(int hash, Object key, Object value,
            boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        //(n - 1) & hash找到桶的位置
        if ((tab = table) != null && (n = tab.length) > 0 &&
        (p = tab[index = (n - 1) & hash]) != null) {
        Node<K,V> node = null, e; K k; V v;
        //如果键的值与链表第一个节点相等,则将 node 指向该节点
        if (p.hash == hash &&
        ((k = p.key) == key || (key != null && key.equals(k))))
        node = p;
        //如果桶节点存在下一个节点
        else if ((e = p.next) != null) {
            //节点为红黑树
        if (p instanceof TreeNode)
         node = ((TreeNode<K,V>)p).getTreeNode(hash, key);//找到需要删除的红黑树节点
        else {
         do {//遍历链表,找到待删除的节点
             if (e.hash == hash &&
                 ((k = e.key) == key ||
                  (key != null && key.equals(k)))) {
                 node = e;
                 break;
             }
             p = e;
         } while ((e = e.next) != null);
        }
        }
        //删除节点,并进行调节红黑树平衡
        if (node != null && (!matchValue || (v = node.value) == value ||
                      (value != null && value.equals(v)))) {
        if (node instanceof TreeNode)
         ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
        else if (node == p)
         tab[index] = node.next;
        else
         p.next = node.next;
        ++modCount;
        --size;
        afterNodeRemoval(node);
        return node;
        }
        }
        return null;
    }

afterNodeRemoval(node);

我们之前说过,这个方法在HashMap是空实现,但在LinkedHashMap重写了该方法,使被删除节点从双向链表中移除

void afterNodeRemoval(Node<K,V> e) { 
    LinkedHashMap.Entry<K,V> p =
        (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
    // 将 p 节点的前驱后后继引用置空
    p.before = p.after = null;
    // b 为 null,表明 p 是头节点
    if (b == null)
        head = a;
    else
        b.after = a;
    // a 为 null,表明 p 是尾节点
    if (a == null)
        tail = b;
    else
        a.before = b;
}

查阅操作

LinkedHashMap是重写了get方法的

public V get(Object key) {
    Node<K,V> e;
    if ((e = getNode(hash(key), key)) == null)
        return null;
    // 如果 accessOrder 为 true,则调用 afterNodeAccess 将被访问节点移动到链表最后
    if (accessOrder)
        afterNodeAccess(e);
    return e.value;
}

若我们通过访问顺序维护链表,当我们使用get方法时,需要将这些方法访问的节点移动到链表的尾部

遍历操作

    public Set<Map.Entry<K,V>> entrySet() {
        Set<Map.Entry<K,V>> es;
        //返回LinkedEntrySet
        return (es = entrySet) == null ? (entrySet = new LinkedEntrySet()) : es;
    }
    
    final class LinkedEntrySet extends AbstractSet<Map.Entry<K,V>> {
        public final Iterator<Map.Entry<K,V>> iterator() {
            return new LinkedEntryIterator();
        }
    }
    final class LinkedEntryIterator extends LinkedHashIterator
        implements Iterator<Map.Entry<K,V>> {
        public final Map.Entry<K,V> next() { return nextNode(); }
    }

    abstract class LinkedHashIterator {
        //下一个节点
        LinkedHashMap.Entry<K,V> next;
        //当前节点
        LinkedHashMap.Entry<K,V> current;
        int expectedModCount;

        LinkedHashIterator() {
            //初始化时,next 为 LinkedHashMap内部维护的双向链表的扁头
            next = head;
            //记录当前modCount,以满足fail-fast
            expectedModCount = modCount;
            //当前节点为null
            current = null;
        }
        //判断是否还有next
        public final boolean hasNext() {
            //就是判断next是否为null,默认next是head  表头
            return next != null;
        }
        //nextNode() 就是迭代器里的next()方法 。
        //该方法的实现可以看出,迭代LinkedHashMap,就是从内部维护的双链表的表头开始循环输出。
        final LinkedHashMap.Entry<K,V> nextNode() {
            //记录要返回的e。
            LinkedHashMap.Entry<K,V> e = next;
            //判断fail-fast
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            //如果要返回的节点是null,异常
            if (e == null)
                throw new NoSuchElementException();
            //更新当前节点为e
            current = e;
            //更新下一个节点是e的后置节点
            next = e.after;
            //返回e
            return e;
        }
        //删除方法 最终还是调用了HashMap的removeNode方法
        public final void remove() {
            Node<K,V> p = current;
            if (p == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            current = null;
            K key = p.key;
            removeNode(hash(key), key, null, false, false);
            expectedModCount = modCount;
        }
    }

迭代LinkedHashMap,就是从内部维护的双链表的表头开始循环输出。而双链表节点的顺序在LinkedHashMap的增、删、改、查时都会更新。以满足按照插入顺序输出,还是访问顺序输出。

总结

  1. LinkedHashMap是线程不安全的
  2. LinkedHashMap允许key为null,value为null
  3. LinkedHashMap是有序的

LinkedHashMap与HashMap的区别

  1. LinkedHashMap是有序的,HashMap是无序的
  2. LinkedHashMap的底层结构为数组 + 单链表 + 红黑树 + 双向链表.,HashMap的底层结构为数组 + 单链表 + 红黑树
  3. 由于LinkedHashMap维护一个双向链表,其迭代速度比HashMap快

参考:LinkedHashMap 源码详细分析(JDK1.8)
面试必备:LinkedHashMap源码解析(JDK8)

你可能感兴趣的:(Java集合类)