考研数学之高等数学知识点整理——4.导数与微分

本系列博客汇总在这里:考研数学知识点汇总系列博客

文章目录

  • 四、导数与微分
    • 1 导数的定义
    • 2 微分的定义
    • 3 可导、可微与连续三者之间的关系
    • 4 导数的计算
      • 4.1 基本初等函数的导数公式
      • 4.2 函数的和、差、积、商的求导法则
      • 4.3 反函数的求导法则
      • 4.4 复合函数的求导法则
    • 5 高阶导数公式

四、导数与微分

1 导数的定义

f ′ ( x 0 ) = lim ⁡ △ x → 0 △ y △ x = lim ⁡ △ x → 0 f ( x 0 + △ x ) − f ( x 0 ) △ x f'(x_{0})=\lim_{△x→0}\frac{△y}{△x}=\lim_{△x→0}\frac{f(x_{0}+△x)-f(x_{0})}{△x} f(x0)=x0limxy=x0limxf(x0+x)f(x0)
也可记作 y ′ ∣ x = x 0 y'|_{x=x_{0}} yx=x0 d y d x ∣ x = x 0 \frac{dy}{dx}|_{x=x_{0}} dxdyx=x0,或 d f ( x ) d x ∣ x = x 0 \frac{df(x)}{dx}|_{x=x_{0}} dxdf(x)x=x0

2 微分的定义

△ y = A △ x + ο ( △ x ) △y=A△x+ο(△x) y=Ax+ο(x),则 d y = A △ x dy=A△x dy=Ax

3 可导、可微与连续三者之间的关系

f(x)在x0可导 ⟺ f(x)在x0可微 ⟹ f(x)在x0连续

4 导数的计算

4.1 基本初等函数的导数公式

  • ( C ) ′ = 0 (C)'=0 (C)=0
  • ( x μ ) ′ = μ x μ − 1 (x^{μ})'=μx^{μ-1} (xμ)=μxμ1
  • ( sin ⁡ x ) ′ = cos ⁡ x (\sin x)'=\cos x (sinx)=cosx
  • ( cos ⁡ x ) ′ = − sin ⁡ x (\cos x)'=-\sin x (cosx)=sinx
  • ( tan ⁡ x ) ′ = sec ⁡ 2 x (\tan x)'=\sec^{2}x (tanx)=sec2x
  • ( cot ⁡ x ) ′ = − csc ⁡ 2 x (\cot x)'=-\csc^{2}x (cotx)=csc2x
  • ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x (\sec x)'=\sec x\tan x (secx)=secxtanx
  • ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x (\csc x)'=-\csc x\cot x (cscx)=cscxcotx
  • ( a x ) ′ = a x ln ⁡ a (a^{x})'=a^{x}\ln a (ax)=axlna
  • ( e x ) ′ = e x (e^{x})'=e^{x} (ex)=ex
  • ( log ⁡ a x ) ′ = 1 x ln ⁡ a (\log_{a}x)'=\frac{1}{x\ln a} (logax)=xlna1
  • ( ln ⁡ x ) ′ = 1 x (\ln x)'=\frac{1}{x} (lnx)=x1
  • ( arcsin ⁡ x ) ′ = 1 1 − x 2 (\arcsin x)'=\frac{1}{\sqrt{1-x^{2}}} (arcsinx)=1x2 1
  • ( arccos ⁡ x ) ′ = − 1 1 − x 2 (\arccos x)'=-\frac{1}{\sqrt{1-x^{2}}} (arccosx)=1x2 1
  • ( arctan ⁡ x ) ′ = 1 1 + x 2 (\arctan x)'=\frac{1}{1+x^{2}} (arctanx)=1+x21
  • ( a r c c o t   x ) ′ = − 1 1 + x 2 (\mathrm{arccot}\ x)'=-\frac{1}{1+x^{2}} (arccot x)=1+x21

4.2 函数的和、差、积、商的求导法则

设u=u(x),v=v(x)都可导,则

  • ( C u ) ′ = C u ′ (Cu)'=Cu' (Cu)=Cu
  • ( u ± v ) ′ = u ′ ± v ′ (u±v)'=u'±v' (u±v)=u±v
  • ( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)=uv+uv
  • ( u v ) ′ = u ′ v − u v ′ v 2 , v ≠ 0 (\frac{u}{v})'=\frac{u'v-uv'}{v^{2}},v≠0 (vu)=v2uvuv,v̸=0

4.3 反函数的求导法则

设x=f(y)在区间Iy内单调,可导且f’(y)≠0,则它的反函数y=f-1在区间Ix=f(Iy)内也可导,且 [ f − 1 ( x ) ] ′ = 1 f ′ ( y ) [f^{-1}(x)]'=\frac{1}{f'(y)} [f1(x)]=f(y)1,或 d y d x = 1 d x / d y \frac{\mathrm{d}y}{\mathrm{d}x}=\frac{1}{\mathrm{d}x/\mathrm{d}y} dxdy=dx/dy1

4.4 复合函数的求导法则

设y=f(u),u=g(x),且f(u)及g(x)都可导,则复合函数y=f(g(x))的导数为 d y d x = d y d u ⋅ d u d x \frac{dy}{dx}=\frac{dy}{du}·\frac{du}{dx} dxdy=dudydxdu y ′ ( x ) = f ′ ( u ) ⋅ g ′ ( x ) y'(x)=f'(u)·g'(x) y(x)=f(u)g(x)

5 高阶导数公式

  • ( a x ) ( n ) = a x ( ln ⁡ a ) n   ( a > 0 ) , ( e x ) ( n ) = e x (a^{x})^{(n)}=a^{x}(\ln a)^n\ (a>0),(e^{x})^{(n)}=e^{x} (ax)(n)=ax(lna)n (a>0),(ex)(n)=ex
  • ( sin ⁡ k x ) ( n ) = k n sin ⁡ ( k x + n π 2 ) (\sin kx)^{(n)}=k^{n}\sin(kx+\frac{nπ}{2}) (sinkx)(n)=knsin(kx+2nπ)
  • ( cos ⁡ k x ) ( n ) = k n cos ⁡ ( k x + n π 2 ) (\cos kx)^{(n)}=k^{n}\cos(kx+\frac{nπ}{2}) (coskx)(n)=kncos(kx+2nπ)
  • [ ln ⁡ ( 1 + x ) ] ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! ( 1 + x ) n [\ln(1+x)]^{(n)}=(-1)^{n-1}\frac{(n-1)!}{(1+x)^{n}} [ln(1+x)](n)=(1)n1(1+x)n(n1)!
  • ( x m ) ( n ) = m ( m − 1 ) ⋅ ⋅ ⋅ ( m − n + 1 ) x m − n (x^{m})^{(n)}=m(m-1)···(m-n+1)x^{m-n} (xm)(n)=m(m1)(mn+1)xmn
  • Leibniz公式:若u(x),v(x)均n阶可导,则
    ( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{(n)}=\sum\limits_{k=0}^{n}\mathrm{C}_{n}^{k}u^{(n-k)}v^{(k)} (uv)(n)=k=0nCnku(nk)v(k)

你可能感兴趣的:(考研数学)