Partition深度解析&一致性hash

Hadoop中Partition深度解析
http://www.tuicool.com/articles/uaQVjqm

旧版 API 的 Partitioner 解析
Partitioner 的作用是对 Mapper 产生的中间结果进行分片,以便将同一分组的数据交给同一个 Reducer 处理,它直接影响 Reduce 阶段的负载均衡。旧版 API 中 Partitioner 的类图如图所示。它继承了JobConfigurable,可通过 configure 方法初始化。它本身只包含一个待实现的方法 getPartition。 该方法包含三个参数, 均由框架自动传入,前面两个参数是key/value,第三个参数 numPartitions 表示每个 Mapper 的分片数,也就是 Reducer 的个数。
MapReduce 提供了两个Partitioner 实 现:HashPartitioner和TotalOrderPartitioner。其中

HashPartitioner 是默认实现,它实现了一种基于哈希值的分片方法,代码如下:
TotalOrderPartitioner 提供了一种基于区间的分片方法,通常用在数据全排序中。 在MapReduce 环境中,容易想到的全排序方案是归并排序,即在 Map 阶段,每个 Map Task进行局部排序;在 Reduce 阶段,启动一个 Reduce Task 进行全局排序。由于作业只能有一个 Reduce Task,因而 Reduce 阶段会成为作业的瓶颈。为了提高全局排序的性能和扩展性, MapReduce 提供了 TotalOrderPartitioner。它能够按照大小将数据分成若干个区间(分片),并保证后一个区间的所有数据均大于前一个区间数据, 这使得全排序的步骤如下:

步骤 3:Reduce 阶段。每个 Reducer 对分配到的区间数据进行局部排序,最终得到全排序数据。

但是不同于数值型的数据,字符串的查找和比较不能按照数值型数据的比较方法。mapreducer采用的Tire tree(关于Tire tree可以参考《字典树(Trie Tree)》)的字符串查找方法。查找的时间复杂度o(m),m为树的深度,空间复杂度o(255^m-1)。是一个典型的空间换时间的案例。
Tire tree的构建
假设树的最大深度为3,划分为【aaad ,aaaf, aaaeh,abbx】

转 一致性hash和solr千万级数据分布式搜索引擎中的应用
http://my.oschina.net/004/blog/169368

一致性hash就是在这种应用背景提出来的,现在被广泛应用于分布式缓存,比如memcached。下面简单介绍下一致性hash的基本原理。最早的版本 http://dl.acm.org/citation.cfm?id=258660。国内网上有很多文章都写的比较好。如: http://blog.csdn.net/x15594/article/details/6270242
下面简单举个例子来说明一致性hash。
准备:1、2、3 三台机器
还有待分配的9个数 1、2、3、4、5、6、7、8、9
一致性hash算法架构
步骤
一、构造出来 2的32次方 个虚拟节点出来,因为计算机里面是01的世界,进行划分时采用2的次方数据容易分配均衡。另 2的32次方是42亿,我们就算有超大量的服务器也不可能超过42亿台吧,扩展和均衡性都保证了。
二、将三台机器分别取IP进行hashcode计算(这里也可以取hostname,只要能够唯一区别各个机器就可以了),然后映射到2的32次方上去。比如1号机器算出来的hashcode并且mod (2^32)为 123(这个是虚构的),2号机器算出来的值为 2300420,3号机器算出来为 90203920。这样三台机器就映射到了这个虚拟的42亿环形结构的节点上了。
三、将数据(1-9)也用同样的方法算出hashcode并对42亿取模将其配置到环形节点上。假设这几个节点算出来的值为 1:10,2:23564,3:57,4:6984,5:5689632,6:86546845,7:122,8:3300689,9:135468。可以看出 1、3、7小于123, 2、4、9 小于 2300420 大于 123, 5、6、8 大于 2300420 小于90203920。从数据映射到的位置开始顺时针查找,将数据保存到找到的第一个Cache节点上。如果超过2^32仍然找不到Cache节点,就会保存到第一个Cache节点上。也就是1、3、7将分配到1号机器,2、4、9将分配到2号机器,5、6、8将分配到3号机器。
这个时候大家可能会问,我到现在没有看见一致性hash带来任何好处,比传统的取模还增加了复杂度。现在马上来做一些关键性的处理,比如我们增加一台机器。按照原来我们需要把所有的数据重新分配到四台机器。一致性hash怎么做呢?现在4号机器加进来,他的hash值算出来取模后是12302012。 5、8 大于2300420 小于12302012 ,6 大于 12302012 小于90203920 。这样调整的只是把5、8从3号机器删除,4号机器中加入 5、6。

大家应该明白一致性hash的基本原理了吧。不过这种算法还是有缺陷,比如在机器节点比较少、数据量大的时候,数据的分布可能不是很均衡,就会导致其中一台服务器的数据比其他机器多很多。为了解决这个问题,需要引入虚拟服务器节点的机制。如我们一共有只有三台机器,1、2、3。但是实际又不可能有这么多机器怎么解决呢?把 这些机器各自虚拟化出来3台机器,也就是 1a 1b 1c 2a 2b 2c 3a 3b 3c,这样就变成了9台机器。实际 1a 1b 1c 还是对应1。但是实际分布到环形节点就变成了9台机器。数据分布也就能够更分散一点。如图:
java的hashmap随着数据量的增加也会出现map调整的问题,必要的时候就初始化足够大的size以防止容量不足对已有数据进行重新hash计算。

疫苗:Java HashMap的死循环 http://coolshell.cn/articles/9606.html
一致性哈希算法的优化—-关于如何保正在环中增加新节点时,命中率不受影响 (原拍拍同事scott)http://scottina.iteye.com/blog/650380

你可能感兴趣的:(大数据)