莫烦pytorch Optimizer优化器

创建数据

import torch
import torch.utils.data as Data
import torch.nn.functional as F
import matplotlib.pyplot as plt

torch.manual_seed(1)

LR = 0.01
BATCH_SIZE = 32
EPOCH =12

x = torch.unsqueeze(torch.linspace(-1,1,1000), dim=1)
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))

torch_dataset = Data.TensorDataset(x,y)
loader = Data.DataLoader(dataset=torch, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,)

每个优化器优化一个神经网络

为了对比每一种优化器,我们给他们各自创建一个神经网络,但这个神经网络都来自同一个Net形式。

class Net(torch.nn.Module):
	def __init__(self):
		super(Net, self).__init__()
		self.hidden = torch.nn.Linear(1,20)
		self.output = torch.nn.Linear(20, 1)
	
	def forward(x):
		x = F.relu(self.hidden(x))
		x = self.output(x)
		return x

net_SGD = Net()
net_Momentum = Net()
net_RMSprop = Net()
net_Adam = Net()
nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]

优化器Optimizer

接下来在创建不同的优化器,用来训练不同的网络,并创建一个loss_func用来计算误差。我们用几种常见的优化器,SGD,Momentum,RMSprop,Adam.

opt_SGD = torch.optim.SGD(net_SGD.paramters(), lr=LR)
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(),lr=LR,momentum=0.8)
opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(),lr=LR,alpha=0.9)
opt_Adam = torch.optim.Adam(net_Adam.parameters(),lr=LR,betas=(0.9,0.99))

loss_func = torch.nn.MSELoss()
losses_his = [[],[],[],[]]

训练/出图

for epoch in range(EPOCH):
	print('EPOCH: ', epoch)
	for step, (b_x, b_y) in enumerate(loader):
		for net, opt, l_his in zip(nets, optimizers, losses_his):
			out = net(b_x)
			opt.zero_grad
			loss = loss_func(out,b_y)
			loss.backward()
			opt.step()
			l_his.append(loss.data.numpy())

函数剖析:

zip()函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元祖,然后返回由这些元组组成的列表。
语法:zip([iterable, …])
iterable – 一个或多个迭代器
返回值
返回元组列表
实例:

>>>a = [1,2,3]
>>> b = [4,5,6]
>>> c = [4,5,6,7,8]
>>> zipped = zip(a,b)     # 打包为元组的列表
[(1, 4), (2, 5), (3, 6)]
>>> zip(a,c)              # 元素个数与最短的列表一致
[(1, 4), (2, 5), (3, 6)]
>>> zip(*zipped)          # 与 zip 相反,*zipped 可理解为解压,返回二维矩阵式
[(1, 2, 3), (4, 5, 6)]

完整代码

import torch
import torch.utils.data as Data
import torch.nn.functional as F
import matplotlib.pyplot as plt

# torch.manual_seed(1)    # reproducible

LR = 0.01
BATCH_SIZE = 32
EPOCH = 12

# fake dataset
x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))

# plot dataset
plt.scatter(x.numpy(), y.numpy())
plt.show()

# put dateset into torch dataset
torch_dataset = Data.TensorDataset(x, y)
loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,)


# default network
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(1, 20)   # hidden layer
        self.predict = torch.nn.Linear(20, 1)   # output layer

    def forward(self, x):
        x = F.relu(self.hidden(x))      # activation function for hidden layer
        x = self.predict(x)             # linear output
        return x

if __name__ == '__main__':
    # different nets
    net_SGD         = Net()
    net_Momentum    = Net()
    net_RMSprop     = Net()
    net_Adam        = Net()
    nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]

    # different optimizers
    opt_SGD         = torch.optim.SGD(net_SGD.parameters(), lr=LR)
    opt_Momentum    = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
    opt_RMSprop     = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
    opt_Adam        = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
    optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]

    loss_func = torch.nn.MSELoss()
    losses_his = [[], [], [], []]   # record loss

    # training
    for epoch in range(EPOCH):
        print('Epoch: ', epoch)
        for step, (b_x, b_y) in enumerate(loader):          # for each training step
            for net, opt, l_his in zip(nets, optimizers, losses_his):
                output = net(b_x)              # get output for every net
                loss = loss_func(output, b_y)  # compute loss for every net
                opt.zero_grad()                # clear gradients for next train
                loss.backward()                # backpropagation, compute gradients
                opt.step()                     # apply gradients
                l_his.append(loss.data.numpy())     # loss recoder

    labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
    for i, l_his in enumerate(losses_his):
        plt.plot(l_his, label=labels[i])
    plt.legend(loc='best')
    plt.xlabel('Steps')
    plt.ylabel('Loss')
    plt.ylim((0, 0.2))
    plt.show()

你可能感兴趣的:(pytorch)