- 深度学习基础知识
namelijink
深度学习人工智能
cuda简介:CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA开发的一种并行计算平台和应用程序编程接口(API)。它允许开发人员利用NVIDIA的GPU(图形处理器)来加速各种计算任务,包括科学计算、机器学习、深度学习、数据分析等。NVIDIA是一个全球领先的计算技术公司,专注于设计和制造高性能计算设备。除了生产强大的GPU,NVIDIA还提供与其GPU
- 【笔记】使用 Pytorch 进行分布式训练
LittleNyima
人工智能深度学习pytorch分布式
本文原文以CCBY-NC-SA4.0许可协议发布于技术相关|使用Pytorch进行分布式训练,转载请注明出处。其实Pytorch分布式训练已经不算什么新技术了,之所以专门写一篇blog是因为今天训模型的时候出现了一个没见过的问题,在调试的时候发现自己平时都是用别人写好的分布式代码,没有深入研究过其中的实现细节,因此感觉有必要整理吸收一下。最简单的数据并行作为最简单的并行计算方式,使用nn.Data
- python使用ray框架改进原有代码,实现多进程与分布式
呆萌的代Ma
pythonpython
安装依赖:pipinstall-ihttps://mirrors.aliyun.com/pypi/simple/'ray[default]'ray框架可以在几乎不改变现有代码的基础上实现分布式与并行计算!!改变的只有传值的方式,与每个函数加上装饰器即可对于常规的循环任务defexponentiation_test(a,b):importtimetime.sleep(1)#这里是为了看是否是真正的多
- Python 魔法学院 - 第24篇:Python 解释器优化 ⭐⭐⭐
星核日记
《Python魔法学院》python开发语言pycharmwindowsPython性能优化
目录引言1.Cython与PyPy1.1Cython1.1.1Cython的优势1.1.2Cython的简单示例1.1.3Cython的适用场景1.2PyPy1.2.1PyPy的优势1.2.2PyPy的简单示例1.2.3PyPy的适用场景1.3Cython与PyPy的对比2.并行计算与分布式计算2.1并行计算2.1.1multiprocessing模块2.1.2concurrent.futures
- 我国化学信息学研究的地位与近期研究进展
xoaxo
算法优化生物数据库网络工作
近两年来,我国的化学信息学研究得到了快速发展,在某些专题的研究方面达到了国际前沿水平。在理论与计算化学研究中,基于第一性原理的新型并行计算方法被提出并用于纳米材料电子结构的高效计算[24],轨道分解方法被用来简化磁性质的四分量相对论计算[25]。同时,量化计算被越来越多地应用于团簇优化[26]及材料性质的预测[27],并越来越注重与实际结合用于反应过程过渡态和催化机理研究[28]。此外,密度泛函理
- GPU(Graphics Processing Unit)详解
美好的事情总会发生
AI人工智能嵌入式硬件硬件工程ai
GPU(GraphicsProcessingUnit)详解1.GPU的定义与核心特性GPU(图形处理器)是一种专为并行计算和图形渲染优化的处理器。与CPU(中央处理器)不同,GPU通过大规模并行架构实现高效处理海量数据,尤其在处理规则化、高并发任务时性能显著优于CPU。关键特性:高并行度:现代GPU包含数千个计算核心(如NVIDIAH100拥有18,432个CUDA核心)。专用内存系统:配备高带宽
- CUDA与CUDPP源码解析及实战应用
昊叔Crescdim
本文还有配套的精品资源,点击获取简介:CUDA是NVIDIA推出的并行计算平台,CUDPP是一个提供GPU优化算法的开源库。本课程将深入解析CUDPP的核心组件,包括基数排序、扫描操作、动态并行性、随机数生成、缓存机制、矩阵乘法和基准测试等。通过学习CUDPP源码,开发者可以掌握GPU并行计算的优化技巧,提升应用程序性能。同时,本课程也会介绍如何在具备CUDASDK和NVIDIA驱动的系统上安装和
- Joblib - Python轻量流水线工具
Think@
Joblib是一款用于在Python中提供轻量流水线的工具。#joblib是一组用于在Python中提供轻量级流水线的工具。#joblib具有以下功能:#透明的磁盘缓存功能和“懒惰”执行模式,简单的并行计算#joblib对numpy大型矩阵进行了特定的优化,简单快速importtime,mathfromjoblibimportParallel,delayed#利用joblib实现并行计算defmy
- Unity Dots理论学习-3.ECS有关的模块(2)
keep-learner
Unityunity学习游戏引擎
Burst编译器如前所述,Unity中的C#代码默认通过JIT(即时编译)编译器Mono编译;或通过AOT(提前编译)编译器IL2CPP编译以提供更好的运行时性能,在某些目标平台上也会有更好的支持。Burst模块提供了第三种编译器,它执行了大量优化,通常能带来比Mono甚至IL2CPP更好的性能。使用Burst可以大大提高并行计算的性能和可扩展性,正如以下图像所示:然而,需要注意的是,Burst只
- 川翔云电脑是什么?租电脑?
渲染101专业云渲染
电脑服务器运维
在数字化时代,川翔云电脑借助云计算技术,把用户终端和云端虚拟电脑连接,打破本地硬件的局限,让大家随时随地工作、娱乐。川翔云电脑的优势强大硬件配置川翔云电脑硬件配置处于行业前列,显卡尤为突出。它配备性能不错的RTX3090,还有48G显存的RTX4090plus,支持1-8卡机配置。多卡模式下,RTX4090plus并行计算能力大幅提升,能处理高显存需求的复杂任务。在超高清视频剪辑中,无论是8K还是
- 均薪23W还缺人,FPGA工程师到底有多重要?
博览鸿蒙
FPGAfpga开发
近两年,随着FPGA行业的快速发展,FPGA工程师的需求量持续增长。FPGA技术在通信、人工智能、自动驾驶、数据中心等领域的广泛应用,使得这一岗位变得尤为重要。尤其是在高性能计算、边缘计算等场景下,FPGA凭借其高并行计算能力和灵活性,成为不可或缺的技术方案。FPGA工程师的核心职责FPGA工程师主要负责FPGA的开发、调试和优化,具体包括:逻辑设计与实现:使用Verilog/VHDL等硬件描述语
- 100.12 AI量化面试题:量化金融中什么是蒙特卡罗模拟?
AI量金术师
金融资产组合模型进化论人工智能金融python
目录0.承前1.解题思路1.1基础概念维度1.2应用场景维度1.3实践实现维度2.基础实现方法2.1几何布朗运动模拟2.2期权定价实现3.高级优化技术3.1方差缩减方法3.2并行计算实现4.风险度量应用4.1VaR计算5.回答话术0.承前本文通过通俗易懂的方式介绍蒙特卡罗模拟(MonteCarloSimulation)在量化金融中的应用,包括基本原理、实现方法和实际案例。如果想更加全面清晰地了解金
- 算力机房选择RoCE还是InfiniBand(IB)
helpme流水
人工智能云计算
前言超高带宽、超低延迟、超高可靠,这是大模型训练对于网络的要求。多年来,TCP/IP协议一直是互联网通信的支柱,但对于AI网络来说,TCP/IP在某些方面存在着致命的缺点。TCP/IP协议的时延较高,通常在数十微秒左右,同时还会对CPU造成严重的负载。RDMA能直接通过网络接口访问内存数据,无需操作系统内核的介入。这允许高吞吐、低延迟的网络通信,尤其适合在大规模并行计算机集群中使用。RDMA技术有
- MapReduce是什么?
头发那是一根不剩了
mapreduce大数据
MapReduce是一种编程模型,最初由Google提出,旨在处理大规模数据集。它是分布式计算的一个重要概念,通常用于处理海量数据并进行并行计算。MapReduce的基本思想是将计算任务分解为两个阶段:Map阶段和Reduce阶段。Map阶段:在这个阶段,输入的数据会被拆分成多个片段,每个片段会被分配给不同的计算节点(也叫做“Mapper”)。每个Mapper处理一部分数据并输出键值对(key-v
- AI硬件加速:CPU vs GPU性能对比
AI天才研究院
AI大模型企业级应用开发实战Python实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
AI硬件加速:CPUvsGPU性能对比关键词:人工智能、硬件加速、CPU、GPU、性能对比、硬件架构、并行计算、优化策略、项目实战摘要:本文将深入探讨AI硬件加速领域中的两个核心组件:CPU和GPU,通过性能对比分析,揭示它们在AI计算中的优势与不足。文章将从基本概念、硬件加速原理、性能指标评测、实际应用场景到项目实战,逐步分析CPU与GPU在AI硬件加速中的表现,为读者提供全面的技术解读与实战指
- .NET FrameWork 4.0 新特性
浪子回头了
asp.net.net框架windowsasp.net扩展语言
请注意,.NET框架4引入了一个改进的安全模式。有关该内容的更多的信息,请参阅文章《.NET框架4中的安全变化》。具体来说,本文中将介绍.NET框架4的如下一些新功能和改进特征:应用程序兼容性和部署\内核新功能及改进\托管扩展框架\并行计算\网络编程\Web开发\客户端开发\数据\通信和工作流一、应用程序兼容性和部署除了一些在安全、标准遵从、正确性、可靠性及性能等方面的改进之外,.NET框架4与基
- 2025年大年初一篇,C#调用GPU并行计算推荐
zzlyx99
c#开发语言
C#调用GPU库的主要目的是利用GPU的并行计算能力,加速计算密集型任务,提高程序性能,支持大规模数据处理,优化资源利用,满足特定应用场景的需求,并提升用户体验。在需要处理大量并行数据或进行复杂计算的场景中,使用GPU可以显著提高效率。以下是一些在C#中比较常用且好用的调用GPU的库:1.CUDAfy.NET特点:CUDAfy.NET是一个开源库,可以将C#代码转换为CUDA代码,支持在NVIDI
- Python 如何使用dask库来并行化Pandas DataFrame
openwin_top
python编程示例系列二pythonpandas开发语言
Dask是一个用于并行计算的Python库,它可以处理比内存大得多的数据集。DaskDataFrame是一个类似于PandasDataFrame的大型并行数据结构,它可以在分布式计算环境中高效地执行复杂的数据操作。以下是如何使用Dask来并行化PandasDataFrame的基本步骤:安装Dask:首先,确保你已经安装了Dask。如果还没有安装,可以使用pip来安装它:pipinstalldask
- Hadoop1.0-HDFS介绍
szjianzr
HADOOP介绍hadoopHDFS
Hadoop是Apache软件基金会所开发的并行计算框架与分布式文件系统。最核心的模块包括HadoopCommon、HDFS与MapReduce。HDFS是Hadoop分布式文件系统(HadoopDistributedFileSystem)的缩写,为分布式计算存储提供了底层支持。采用Java语言开发,可以部署在多种普通的廉价机器上,以集群处理数量积达到大型主机处理性能。一、HDFS基本概念1、Bl
- NVIDIA的算力支持
杭州大厂Java程序媛
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
NVIDIA的算力支持关键词:NVIDIA,GPU,Turing架构,RTX,AI,AIoT,云计算,大数据,深度学习1.背景介绍NVIDIA作为全球领先的图形处理芯片制造商,近年来在人工智能领域也取得了显著的进展。NVIDIA的GPU(图形处理器)因其强大的并行计算能力,成为了深度学习和人工智能(AI)领域的主流硬件。NVIDIA的Turing架构引入了更强的张量计算能力,使得深度学习任务能够更
- 【2024第一期CANN训练营】Ascend C算子开发基础篇
小超编程
c语言java算法
AscendC是面向算子开发场景的编程语言,它原生支持C和C++标准规范,并提供了多层接口抽象、自动并行计算等关键技术,以提高算子开发效率。AscendC的特点C/C++原语编程编程模型屏蔽硬件差异类库API封装,兼顾易用与高效孪生调试,可在CPU侧模拟NPU侧的行为开发基本流程环境准备使用AscendC完成Add算子核函数开发;使用ICPU_RUN_KFCPU调测宏完成算子核函数CPU侧运行验证
- Kafka架构
优人ovo
kafka架构分布式
引言Kafka凭借其独树一帜的分区架构,在消息中间件领域展现出了卓越的性能表现。其分区架构不仅赋予了Kafka强大的并行计算能力,使其能够高效处理海量数据,还显著提升了系统的容灾能力,确保在复杂的运行环境中始终保持稳定可靠。本文将深入剖析Kafka的架构选型,通过对其底层逻辑的抽丝剥茧,帮助我们提炼架构设计的关键能力与思维模式,进而为优化自身系统架构提供极具价值的参考。消息中间件通用架构生产者功能
- 大数据(一)MaxCompute
胖当当技术
架构云计算odps学习大数据
一、引言作者后面会使用MaxCompute,所以在进行学习研究,总会有一些疑问产生,这里讲讲作者的疑问和思路二、介绍MaxCompute(原名ODPS-OpenDataProcessingService)是阿里云提供的大数据处理平台,专门用于批量数据存储和大规模并行计算。它广泛应用于数据分析和处理任务,为企业级数据处理提供高效的解决方案。下面是MaxCompute的一些主要功能和应用场景:大规模数
- 电脑要使用cuda需要进行什么配置
Channing Lewis
计算机科学AI电脑cuda
在电脑上使用CUDA(NVIDIA的并行计算平台和API),需要进行以下配置和准备:1.检查NVIDIA显卡支持确保你的电脑拥有支持CUDA的NVIDIA显卡。可以在NVIDIA官方CUDA支持显卡列表中查看显卡型号是否支持CUDA。2.安装NVIDIA显卡驱动需要安装与显卡和CUDA版本兼容的NVIDIA驱动程序:前往NVIDIA驱动下载页面,选择显卡型号下载并安装驱动。安装完成后,使用命令检查
- Java 大数据高性能计算:利用多线程与并行计算框架(39)
青云交
大数据新视界Java大视界大数据高性能计算多线程并行计算框架ApacheSpark线程安全数据一致性java
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。一、本博客的精华专栏:
- matlab的多线程操作
m0_74823044
面试学习路线阿里巴巴资料职业发展matlab单片机开发语言后端
matlab的多线程操作先导知识一、结论二、定时器timer三、多进程操作先导知识听说过:定时器中断、线程、进程知道:matlab的帮助文档使用方式,如:docmemmapfile、helpmemmapfile理解:回调函数,同步回调、异步回调(不知道也没关系,csdn里面很多人都写了这个)一、结论截止到2021a版本,matlab不能实现传统意义的多线程,但是可以实现并行计算(docparall
- CUDA编程(一):GPU计算与CUDA编程简介
AI Player
CUDA人工智能CUDANVIDIA
CUDA编程(一):GPU计算与CUDA编程简介GPU计算GPU硬件资源GPU软件资源GPU存储资源CUDA编程GPU计算NVIDIA公司发布的CUDA是建立在GPU上的一个通用并行计算平台和编程模型,CUDA编程可以利用GPU的并行计算引擎来更加高效地解决比较复杂的计算难题。GPU的并行计算最成功的一个应用就是深度学习领域。GPU通常不作为一个独立运行的计算平台,而需要与CPU协同工作,它可以看
- GPU编程与CUDA
Nice_cool.
Cuda与TensorRTc++
CUDA编程并行计算整体流程从主机端申请内存,把内存部分的内容拷贝到设备端在设备端的核函数计算从设备端拷贝到主机端,并且释放内存显存主机端:cpu设备端:gpu核函数:在gpu上运行的函数CUDA内存模型CUDA中的内存模型分为以下几个层次(硬件):•每个线程处理器(SP)都用自己的registers(寄存器)•每个SP都有自己的localmemory(局部内存),register和localme
- Transformer架构的GPU并行和之前的NLP算法并行有什么不同?
AI大模型学习不迷路
transformer自然语言处理大模型深度学习NLPLLM大语言模型
1.什么是GPU并行计算?GPU并行计算是一种利用图形处理单元(GPU)进行大规模并行数据处理的技术。与传统的中央处理单元(CPU)相比,GPU拥有更多的核心,能够同时处理数千个线程,这使得GPU在处理高度并行的任务时表现出色。在深度学习中,GPU并行计算被广泛应用于训练神经网络,加速模型训练过程。在2017年之前,自然语言处理(NLP)领域的研究者们通常会从头开始训练模型,那时能够利用GPU进行
- 云计算技术深度解析与代码使用案例
我的运维人生
云计算运维开发技术共享
云计算技术深度解析与代码使用案例引言随着信息技术的飞速发展,云计算作为一种革命性的技术,正在逐步改变我们的生活和工作方式。云计算不仅提供了前所未有的计算能力和存储资源,还以其灵活性和可扩展性,成为现代企业数字化转型的重要支撑。本文将深入探讨云计算的核心技术、应用场景,并通过一个具体的代码使用案例,展示如何在云计算平台上实现一个基本的应用程序。云计算技术特点云计算是网格计算、分布式计算、并行计算、效
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置