hive调优是比较大的专题,需要结合实际的业务,数据的类型,分布,质量状况等来实际的考虑如何进行系统性的优化,hive底层是mapreduce,所以hadoop调优也是hive调优的一个基础,hvie调优可以分为几个模块进行考虑,数据的压缩与存储,sql的优化,hive参数的优化,解决数据的倾斜等。
主要分为以下几块:
对分析的数据选择合适的存储格式与压缩方式能提高hive的分析效率:
压缩可以节约磁盘的空间,基于文本的压缩率可达40%+; 压缩可以增加吞吐量和性能量(减小载入内存的数据量),但是在压缩和解压过程中会增加CPU的开销。所以针对IO密集型的jobs(非计算密集型)可以使用压缩的方式提高性能。 几种压缩算法:
Hadoop编码/解码器方式,如下表所示
1. Hive中间数据压缩
hive.exec.compress.intermediate:默认该值为false,设置为true为激活中间数据压缩功能。HiveQL语句最终会被编译成Hadoop的Mapreduce job,开启Hive的中间数据压缩功能,就是在MapReduce的shuffle阶段对mapper产生的中间结果数据压缩。在这个阶段,优先选择一个低CPU开销的算法。
mapred.map.output.compression.codec:该参数是具体的压缩算法的配置参数,SnappyCodec比较适合在这种场景中编解码器,该算法会带来很好的压缩性能和较低的CPU开销。设置如下:
set hive.exec.compress.intermediate=true
set mapred.map.output.compression.codec= org.apache.hadoop.io.compress.SnappyCodec
set mapred.map.output.compression.codec=com.hadoop.compression.lzo.LzoCodec;
2. Hive最终数据压缩
hive.exec.compress.output:用户可以对最终生成的Hive表的数据通常也需要压缩。该参数控制这一功能的激活与禁用,设置为true来声明将结果文件进行压缩。
mapred.output.compression.codec:将hive.exec.compress.output参数设置成true后,然后选择一个合适的编解码器,如选择SnappyCodec。设置如下:
set hive.exec.compress.output=true
set mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec
1. 压缩模式评价
2. 压缩模式对比
常见的hive文件存储格式包括以下几类:TEXTFILE、SEQUENCEFILE、RCFILE、ORC。其中TEXTFILE为默认格式,建表时默认为这个格式,导入数据时会直接把数据文件拷贝到hdfs上不进行处理。SequenceFile、RCFile、ORC格式的表不能直接从本地文件导入数据,数据要先导入到TextFile格式的表中,然后再从TextFile表中用insert导入到SequenceFile、RCFile表中。
3.1 TextFile
建表代码
${建表语句}
stored as textfile;
##########################################插入数据########################################
set hive.exec.compress.output=true; --启用压缩格式
set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec; --指定输出的压缩格式为Gzip
set mapred.output.compress=true;
set io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec;
insert overwrite table textfile_table select * from T_Name;
3.2 Sequence Files
建表代码
${建表语句}
SORTED AS SEQUENCEFILE; --将Hive表存储定义成SEQUENCEFILE
##########################################插入数据########################################
set hive.exec.compress.output=true; --启用压缩格式
set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec; --指定输出的压缩格式为Gzip
set mapred.output.compression.type=BLOCK; --压缩选项设置为BLOCK
set mapred.output.compress=true;
set io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec;
insert overwrite table textfile_table select * from T_Name;
3.3 RCFile
存储方式:数据按行分块,每块按列存储。结合了行存储和列存储的优点:
建表代码
${建表语句}
stored as rcfile;
-插入数据操作:
set hive.exec.compress.output=true;
set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;
set mapred.output.compress=true;
set io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec;
insert overwrite table rcfile_table select * from T_Name;
3.4 ORCFile
存储方式:数据按行分块,每块按照列存储。
压缩快,快速列存取。效率比rcfile高,是rcfile的改良版本。
hive文件存储格式包括以下几类:
1、TEXTFILE
2、SEQUENCEFILE
3、RCFILE
4、ORCFILE(0.11以后出现)
其中TEXTFILE为默认格式,建表时不指定默认为这个格式,导入数据时会直接把数据文件拷贝到hdfs上不进行处理;
SEQUENCEFILE,RCFILE,ORCFILE格式的表不能直接从本地文件导入数据,数据要先导入到textfile格式的表中, 然后再从表中用insert导入SequenceFile,RCFile,ORCFile表中。
前提创建环境:
hive 0.8
创建一张testfile_table表,格式为textfile。
create table if not exists testfile_table( site string, url string, pv bigint, label string) row format delimited fields terminated by '\t' stored as textfile;
load data local inpath '/app/weibo.txt' overwrite into table testfile_table;
1、TEXTFILE
默认格式,数据不做压缩,磁盘开销大,数据解析开销大。
可结合Gzip、Bzip2使用(系统自动检查,执行查询时自动解压),但使用这种方式,hive不会对数据进行切分,
从而无法对数据进行并行操作。
示例:
create table if not exists textfile_table( site string, url string, pv bigint, label string) \ row format delimited fields terminated by '\t' stored as textfile;
插入数据操作: set hive.exec.compress.output=true; set mapred.output.compress=true; set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec; set io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec;
insert overwrite table textfile_table select * from testfile_table; |
2、SEQUENCEFILE
SequenceFile是Hadoop API提供的一种二进制文件支持,其具有使用方便、可分割、可压缩的特点。
SequenceFile支持三种压缩选择:NONE,RECORD,BLOCK。Record压缩率低,一般建议使用BLOCK压缩。
示例:
create table if not exists seqfile_table( site string, url string, pv bigint, label string) \ row format delimited fields terminated by '\t' stored as sequencefile;
插入数据操作: set hive.exec.compress.output=true; set mapred.output.compress=true; set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec; set io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec; SET mapred.output.compression.type=BLOCK;
insert overwrite table seqfile_table select * from testfile_table; |
3、RCFILE
RCFILE是一种行列存储相结合的存储方式。首先,其将数据按行分块,保证同一个record在一个块上,避免读一个记录需要读取多个block。其次,块数据列式存储,有利于数据压缩和快速的列存取。
RCFILE文件示例:
create table if not exists rcfile_table( site string, url string, pv bigint, label string) \ row format delimited fields terminated by '\t' stored as rcfile;
插入数据操作: set hive.exec.compress.output=true; set mapred.output.compress=true; set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec; set io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec;
insert overwrite table rcfile_table select * from testfile_table; |
四、ORCFILE
ORCFILE文件示例:
create table if not exists orcfile_table( site string, url string, pv bigint, label string) \ row format delimited fields terminated by '\t' stored as orc;
插入数据操作: set hive.exec.compress.output=true; set mapred.output.compress=true; set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec; set io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec;
insert overwrite table orcfile_table select * from testfile_table; |
五、再看TEXTFILE、SEQUENCEFILE、RCFILE三种文件的存储情况:
[hadoop@node3 ~]$ hadoop dfs -dus /user/hive/warehouse/* hdfs://node1:19000/user/hive/warehouse/hbase_table_1 0 hdfs://node1:19000/user/hive/warehouse/hbase_table_2 0 hdfs://node1:19000/user/hive/warehouse/orcfile_table 0 hdfs://node1:19000/user/hive/warehouse/rcfile_table 102638073 hdfs://node1:19000/user/hive/warehouse/seqfile_table 112497695 hdfs://node1:19000/user/hive/warehouse/testfile_table 536799616 hdfs://node1:19000/user/hive/warehouse/textfile_table 107308067 [hadoop@node3 ~]$ hadoop dfs -ls /user/hive/warehouse/*/ -rw-r--r-- 2 hadoop supergroup 51328177 2014-03-20 00:42 /user/hive/warehouse/rcfile_table/000000_0 -rw-r--r-- 2 hadoop supergroup 51309896 2014-03-20 00:43 /user/hive/warehouse/rcfile_table/000001_0 -rw-r--r-- 2 hadoop supergroup 56263711 2014-03-20 01:20 /user/hive/warehouse/seqfile_table/000000_0 -rw-r--r-- 2 hadoop supergroup 56233984 2014-03-20 01:21 /user/hive/warehouse/seqfile_table/000001_0 -rw-r--r-- 2 hadoop supergroup 536799616 2014-03-19 23:15 /user/hive/warehouse/testfile_table/weibo.txt -rw-r--r-- 2 hadoop supergroup 53659758 2014-03-19 23:24 /user/hive/warehouse/textfile_table/000000_0.gz -rw-r--r-- 2 hadoop supergroup 53648309 2014-03-19 23:26 /user/hive/warehouse/textfile_table/000001_1.gz |
总结:
相比TEXTFILE和SEQUENCEFILE,RCFILE由于列式存储方式,数据加载时性能消耗较大,但是具有较好的压缩比和查询响应。数据仓库的特点是一次写入、多次读取,因此,整体来看,RCFILE相比其余两种格式具有较明显的优势。
参考:
https://blog.csdn.net/helloxiaozhe/article/details/78465467
https://blog.csdn.net/qq_36753550/article/details/82825207