DBNs(Deep Belief Networks)由多个限制玻尔兹曼机(Restricted Boltzmann Machines)层组成。
先用自编码器的方法进行无监督的预训练,提取特征并初始化权重,然后使用标注信息进行监督式的训练。当然自编码器的作用不仅局限于给监督训练做预训练,直接使用自编码器进行特征提取和分析也是可以的。
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
def xavier_init(fan_in, fan_out, constant=1):
low = -constant*np.sqrt(6.0/(fan_in+fan_out))
high = constant*np.sqrt(6.0/(fan_in+fan_out))
return tf.random_uniform((fan_in,fan_out),
minval=low, maxval=high,
dtype=tf.float32)
class AdditiveGaussianNoiseAutoencoder():
def __init__(self,n_input,n_hidden,transfer_function=tf.nn.softplus,
optimizer=tf.train.AdamOptimizer(),scale=0.1):
self.n_input=n_input
self.n_hidden=n_hidden
self.transfer=transfer_function
self.scale=tf.placeholder(tf.float32)
self.training_scale=scale
network_weights = self._initialize_weights()
self.weights=network_weights
self.x=tf.placeholder(tf.float32,[None,self.n_input])
self.hidden=self.transfer(tf.add(
tf.matmul(self.x+scale*tf.random_normal((n_input,)),#输入要加上噪声扰动
self.weights['w1']),self.weights['b1']))
self.reconstruction=tf.add(tf.matmul(self.hidden,self.weights['w2']),
self.weights['b2'])
self.cost=0.5*tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction,
self.x), 2.0))
self.optimizer=optimizer.minimize(self.cost)
init=tf.global_variables_initializer()
self.sess=tf.Session()
self.sess.run(init)
def _initialize_weights(self):
all_weights=dict()
all_weights['w1']=tf.Variable(xavier_init(self.n_input,self.n_hidden))
all_weights['b1']=tf.Variable(tf.zeros([self.n_hidden],
dtype=tf.float32))
all_weights['w2']=tf.Variable(tf.zeros([self.n_hidden,self.n_input],
dtype=tf.float32))
all_weights['b2']=tf.Variable(tf.zeros([self.n_input],
dtype=tf.float32))
return all_weights
def partial_fit(self,X):
cost, opt=self.sess.run((self.cost,self.optimizer),
feed_dict={self.x: X,
self.scale: self.training_scale})
return cost
def calc_total_cost(self,X):
return self.sess.run(self.cost,
feed_dict={self.x :X,
self.scale: self.training_scale})
def transform(self,X):
return self.sess.run(self.hidden,
feed_dict={self.x :X,
self.scale: self.training_scale})
def generate(self,hidden=None):
if hidden is None:
hidden=np.random.normal(size=self.weights['b1'])
return self.sess.run(self.reconstruction,
feed_dict={self.hidden: hidden})
def reconstruct(self, X):
return self.sess.run(self.reconstruction,feed_dict={
self.x: X, self.scale:self.training_scale
})
def getWeights(self):
return self.sess.run(self.weights['w1'])
def getBiases(self):
return self.sess.run(self.weights['b1'])
mnist=input_data.read_data_sets('MNIST_data', one_hot=True)
def standard_scale(X_train, X_test):
preprocessor = prep.StandardScaler().fit(X_train)
X_train=preprocessor.transform(X_train)
X_test=preprocessor.transform(X_test)
return X_train, X_test
def get_random_block_from_data(data, batch_size):
start_index = np.random.randint(0, len(data)-batch_size)
return data[start_index:(start_index+batch_size)]
X_train, X_test=standard_scale(mnist.train.images, mnist.test.images)
n_samples=int(mnist.train.num_examples)
training_epochs=20
batch_size=128
display_step=1
autoencoder=AdditiveGaussianNoiseAutoencoder(n_input=784,
n_hidden=200,
transfer_function=tf.nn.softplus,
optimizer=tf.train.AdamOptimizer(learning_rate=0.001),
scale=0.1)
for epoch in range(training_epochs):
avg_cost=0
total_batch=int(n_samples/batch_size)
for i in range(total_batch):
batch_xs=get_random_block_from_data(X_train,batch_size)
cost=autoencoder.partial_fit(batch_xs)
avg_cost += cost/n_samples*batch_size
if epoch % display_step==0:
print('Epoch:',epoch+1,'Cost:',avg_cost)
print('Total_cost',autoencoder.calc_total_cost(X_test))