注:
此篇文章旨在总结本人在运用BFS过程中的一些技巧,不是对DFS的一些基础介绍,还不明白DFS的过程的读者,请绕道百度,以免耽误时间!
BFS的应用场景:很多问题,不好概括,典型应用就是图的遍历和树的遍历。
void BFS(int s)
{
queue q;
q.push(s);
while(!q.empty())
{
取出队首元素top;
访问队首元素top;
将队首元素出队;
将top的下一层结点中未曾入队的节点全部入队,并设置为已入队;
}
}
PAT真题:1091 Acute Stroke (30 分)
One important factor to identify acute stroke (急性脑卒中) is the volume of the stroke core. Given the results of image analysis in which the core regions are identified in each MRI slice, your job is to calculate the volume of the stroke core.
Each input file contains one test case. For each case, the first line contains 4 positive integers: M, N, L and T, where M and N are the sizes of each slice (i.e. pixels of a slice are in an M×N matrix, and the maximum resolution is 1286 by 128); L (≤60) is the number of slices of a brain; and T is the integer threshold (i.e. if the volume of a connected core is less than T, then that core must not be counted).
Then L slices are given. Each slice is represented by an M×N matrix of 0's and 1's, where 1 represents a pixel of stroke, and 0 means normal. Since the thickness of a slice is a constant, we only have to count the number of 1's to obtain the volume. However, there might be several separated core regions in a brain, and only those with their volumes no less than T are counted. Two pixels are connected and hence belong to the same region if they share a common side, as shown by Figure 1 where all the 6 red pixels are connected to the blue one.
Figure 1
For each case, output in a line the total volume of the stroke core.
3 4 5 2
1 1 1 1
1 1 1 1
1 1 1 1
0 0 1 1
0 0 1 1
0 0 1 1
1 0 1 1
0 1 0 0
0 0 0 0
1 0 1 1
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 1
1 0 0 0
26
题目大意:
给定一的大小个三维数组(可以理解成一个三维空间),0表示正常1表示有肿瘤,肿瘤块的大小大于等于t才算作是肿瘤,计算所有满足肿瘤块条件的块数
分析:
遍历每个点,对每个点使用BFS算法搜索取周围的肿瘤,如果肿瘤块大小大于t,则把该肿瘤块的面积记录下来!
#include
#include
using namespace std;
struct node {
int x, y, z;
};
int m, n, l, t;
//定义增量数组来表示6个方向
int X[6] = {1, 0, 0, -1, 0, 0};
int Y[6] = {0, 1, 0, 0, -1, 0};
int Z[6] = {0, 0, 1, 0, 0, -1};
int arr[1300][130][80];
bool visit[1300][130][80];
bool judge(int x, int y, int z) {
if(x < 0 || x >= m || y < 0 || y >= n || z < 0 || z >= l) return false;//越界返回false
if(arr[x][y][z] == 0 || visit[x][y][z] == true) return false;//不是肿瘤或者已经访问过,则返回false
return true;
}
int bfs(int x, int y, int z) {
int cnt = 0;
node temp;
temp.x = x, temp.y = y, temp.z = z;
queue q;
q.push(temp);//队首元素入队
visit[x][y][z] = true;
while(!q.empty()) {
node top = q.front();//访问队首元素
q.pop();//队首元素出队
cnt++;//肿瘤记录+1
for(int i = 0; i < 6; i++) {//访问队首元素的下一层的元素(周围的6个元素中的符合要求的入队)
int tx = top.x + X[i];
int ty = top.y + Y[i];
int tz = top.z + Z[i];
if(judge(tx, ty, tz)) {
visit[tx][ty][tz] = true;
temp.x = tx, temp.y = ty, temp.z = tz;
q.push(temp);
}
}
}
if(cnt >= t)
return cnt;
else
return 0;
}
int main() {
scanf("%d %d %d %d", &m, &n, &l, &t);
for(int i = 0; i < l; i++)
for(int j = 0; j < m; j++)
for(int k = 0; k < n; k++)
scanf("%d", &arr[j][k][i]);
int ans = 0;
for(int i = 0; i < l; i++) {
for(int j = 0; j < m; j++) {
for(int k = 0; k < n; k++) {
if(arr[j][k][i] == 1 && visit[j][k][i] == false)
ans += bfs(j, k, i);
}
}
}
printf("%d", ans);
return 0;
}