- R 和 Hadoop 大数据分析(一)
原文:annas-archive.org/md5/b7f3a14803c1b4d929732471e0b28932译者:飞龙协议:CCBY-NC-SA4.0前言企业每天获取的数据量呈指数增长。现在可以将这些海量信息存储在像Hadoop这样的低成本平台上。这些组织目前面临的难题是如何处理这些数据,以及如何从中提取关键见解。因此,R就成为了关键工具。R是一个非常强大的工具,它使得在数据上运行高级统计模
- Python 大数据分析(二)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/5058e6970bd2a8d818ecc1f7f8fef74a译者:飞龙协议:CCBY-NC-SA4.0第六章:第五章处理缺失值和相关性分析学习目标到本章结束时,你将能够:使用PySpark检测和处理数据中的缺失值描述变量之间的相关性计算PySpark中两个或多个变量之间的相关性使用PySpark创建相关矩阵在本章中,我们将使用Iris数据集处理
- Zookeeper 在 Kafka 中的作用详解:分布式协调服务的核心价值
lxb_不卑不亢
消息队列MQ进阶实战分布式zookeeperkafkarocketmq
摘要ApacheKafka是一个高吞吐、分布式的流处理平台,广泛应用于大数据和实时系统中。而ApacheZookeeper,则是Kafka背后不可或缺的“隐形英雄”。本文将深入剖析Zookeeper在Kafka架构中的核心作用,帮助开发者全面理解其在分布式协调、元数据管理、故障恢复等方面的关键地位。一、Zookeeper简介Zookeeper是一个开源的分布式协调服务,最初由Hadoop生态发展而
- 2023-08-19
余則徐
2023.8.19.达视津气象2023.8.19.达视津气象阴晴不定朋友们早上好!今天是2023.8.19.星期六,农历七月初四的6:41;这个时间的干支历法是癸卯年庚申月己酉日丁卯时。气象预报不准,是常态;以前不准,现在有了超级计算机进行大数据运算了,还是不准:超级计算机运算,不如老农民抬头看天。而老农民却说,我不但要抬头看天,还要低头看河滩哪里有王八蛋。原来王八是可以预测每年有没有水患的!如果
- Python 现代时间序列预测第二版(五)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/22eab741fce9c15dfad894ecf37bdd51译者:飞龙协议:CCBY-NC-SA4.0第十七章:概率预测及更多在整本书中,我们学习了生成预测的不同技术,包括一些经典方法,使用机器学习以及一些深度学习架构。但我们一直在关注一种典型的预测问题——为连续时间序列生成点预测,并且没有层级关系且历史数据足够丰富。我们之所以这样做,是因为这
- 喜爱购有什么新消息?如何打造百城万店
氧惠好物
自2020年10月起,西安喜爱购商贸商贸股份有限公司全力打造的“百城万店”新零售商业模式应运而生。在探索新零售的道路上,通过互联网、大数据、云计算、人工智能等新技术,重构“人、货、场”商业元素,秉持“舍利差赚服务”经营理念,在全国至少一百个城市的“一千户以上的中高端社区”,打造至少两万家“一区一店”社区生活超市。大家好!我是氧惠最大团队&联合创始人氧惠达人导师。氧惠佣金更高,模式更好,终端用户不流
- 305李03days作业#裂变实验室#
李_d891
A账号大数据里加的人B账号精筛选一遍的客户C账号vip客户深度信任客户今天事情有点多,没有好好学习,明天重新写一个补到新作业里。
- 解决方案架构手册第三版(二)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/767f6c16a82c581ed50af87f92c3fe8f译者:飞龙协议:CCBY-NC-SA4.0第五章:5云原生架构设计模式在数字化转型快速发展的时代,企业越来越多地转向云平台,提供可扩展、具备弹性且具成本效益的解决方案。采用云原生架构正成为寻求敏捷性、创新和运营效率的组织的战略必需。本章将引导您设计和实施云原生架构的旅程,重点介绍架构模
- Apache Ignite 的并发控制:实现高性能事务处理的关键
AI天才研究院
AI实战AI人工智能与大数据LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍随着大数据时代的到来,数据量的增长和计算能力的提升使得传统的数据库和计算模型已经无法满足业务需求。为了应对这些挑战,分布式计算和存储技术得到了广泛的研究和应用。ApacheIgnite是一款高性能的分布式数据库和计算平台,它可以提供实时性能和高可用性,同时支持事务处理和并发控制。在这篇文章中,我们将深入探讨ApacheIgnite的并发控制机制,以及如何实现高性能事务处理。我们将从以下
- Jenkins集成Gitlab流水线
大唐雷恋
参考这篇文章就够了https://www.zxblinux.com/archives/665另外,备注下流水线的配置:pipeline{agentanystages{stage('GitPull'){steps{echo'Updatesourcefromgitlab...'checkout([$class:'GitSCM',branches:[[name:'*/develop']],doGener
- DolphinScheduler 如何高效调度 AnalyticDB on Spark 作业?
DolphinScheduler社区
spark大数据分布式
DolphinScheduler是一个分布式易扩展的可视化DAG工作流任务调度开源系统,能高效地执行和管理大数据流程。用户可以在DolphinSchedulerWeb界面轻松创建、编辑和调度云原生数据仓库AnalyticDBMySQL版的Spark作业。前提条件AnalyticDBforMySQL集群的产品系列为企业版、基础版或湖仓版。AnalyticDBforMySQL集群中已创建Job型资源组
- instantiate 卡顿严重_利用缓存池解决Instantiate慢的问题
weixin_39958100
instantiate卡顿严重
Unity3D做项目有三个地方处理不好游戏整体就会出现卡顿的问题。1.NGUI直接打开界面卡,建议看看这一篇文章http://www.xuanyusong.com/archives/2799(本文就不赘述了)2.角色放技能的时候卡尤其是放群体攻击技能时,因为每个人身上都要产生一个技能特效。技能都是用粒子特效做的,虽然Unity中粒子特效也是一个GameObject.但是ParticleSystem
- 10分钟搞定 MinIO 单节点多磁盘部署!打造稳定高可用对象存储【二】
MinIO是一个**高性能、开源的对象存储系统**,主要用于存储非结构化数据(如图片、视频、文档、备份等),与AmazonS3完全兼容。它被广泛用于云原生应用、大数据分析、AI模型存储、容器平台(如Kubernetes)等场景。MinIO支持多种部署模式,其中:单节点单磁盘(Single-NodeSingle-Drive)模式适用于开发测试、小规模应用或资源受限的场景。它的部署简单,不依赖集群、分
- 时序数据库在数据库领域的应用前景
数据库管理艺术
数据库时序数据库strutsai
时序数据库在数据库领域的应用前景关键词:时序数据库、时间序列数据、物联网、监控系统、金融分析、大数据、实时分析摘要:本文深入探讨了时序数据库在现代数据管理中的关键作用和应用前景。我们将从时序数据的基本特性出发,分析时序数据库的核心架构和设计原理,比较主流时序数据库产品的技术特点,并通过实际案例展示其在物联网、金融科技、运维监控等领域的应用价值。文章还将提供时序数据库选型指南,探讨未来技术发展趋势,
- 数据库和数据仓库区别
hhhecker
Hadoop学习数据仓库数据库hive
HIve与Mysql对比HiveMysql数据存储位置HDFS本地磁盘数据格式用户定义系统决定数据更新不支持(不支持修改和删除)支持(支持增删改查)索引有,但较弱,一般很少用有,经常使用的执行MapReduceExecutor执行延迟高低可扩展性高低数据规模大小数据库与数据仓库对比数据库:传统的关系型数据库主要应用在基本的事务处理,例如银行交易之类的场景数据库支持增删改查这些常见的操作。数据仓库:
- 【软考速通笔记】系统架构设计师⑱——大数据架构设计理论与实践
小康师兄
系统架构设计师笔记系统架构大数据LanbdaKappa数据湖批处理
文章目录一、前言二、传统数据库遇到的问题2.1问题的根源2.2传统解决方法三、大数据基础3.1大数据处理技术3.2大数据利用过程3.3大数据处理系统面临的挑战3.4大数据具有的属性和特征四、Lanbda架构4.1批处理层4.2加速层4.3服务层五、Kappa架构5.1实时层5.2服务层六、Lambda和Kappa对比七、其他一、前言笔记目录大纲请查阅:【软考速通笔记】系统架构设计师——导读关注【小
- 深入解析Hadoop中的推测执行:原理、算法与策略
码字的字节
hadoop布道师hadoop算法推测执行
Hadoop推测执行概述在分布式计算环境中,任务执行速度的不均衡是一个普遍存在的挑战。Hadoop作为主流的大数据处理框架,通过引入推测执行(SpeculativeExecution)机制有效缓解了这一问题。该技术本质上是一种乐观的容错策略,当系统检测到某些任务执行明显落后于预期进度时,会自动在其它计算节点上启动相同任务的冗余副本,最终选择最先完成的任务结果作为输出。核心设计动机推测执行的诞生源于
- 阿里云态势感知和安骑士有什么区别?
阿腾云
阿里云态势感知和安骑士均是阿里云云盾安全产品,态势感知属于安全管理类的产品,安骑士数据服务器安全类产品,阿里云百科网来详细说下阿里云态势感知和安骑士之间的区别:态势感知和安骑士的区别简单来说,安骑士是检测云服务器漏洞的,态势感知提供安全类的大数据分析服务。态势感知:安全大数据分析平台,通过机器学习和结合全网威胁情报,发现传统防御软件无法覆盖的网络威胁,溯源攻击手段、并且提供可行动的解决方案。安骑士
- 大模型软件的多租户架构设计
AI天才研究院
AI人工智能与大数据ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
大模型软件的多租户架构设计关键词:大模型软件、多租户架构、设计、性能优化、安全性摘要:随着大数据和人工智能技术的迅猛发展,大模型软件在各个领域得到了广泛应用。然而,如何在大模型软件中实现高效的多租户架构设计,成为当前技术领域的一个关键挑战。本文将深入探讨大模型软件的多租户架构设计,包括其背景、核心概念、算法原理、系统架构、项目实战以及最佳实践等,旨在为开发者提供一套系统化、全面化的设计指南。设计过
- 【原创文集】如果时光会说话
7a82ff5fbe9b
大数据工程学院21计科本2王玉艳1528662159515286621595.如果时光会说话,它会不会知道未来发生的事情然后跟人类讲呢?从2006年的非典到2019年的新冠疫情,发生了太多太多的让人类遭遇苦难的病毒。如果时光会说话,它是否会将即将发生的事与我们一说,让人类避免所遭遇的一切呢?如果时光会说话,不知道它看见这些在它身体里所发生的一切,它会不会感到悲哀呢?如果时光会说话,我会问问它新冠疫
- 深入解析 Spark:关键问题与答案汇总
※尘
sqlhivespark
在大数据处理领域,Spark凭借其高效的计算能力和丰富的功能,成为了众多开发者和企业的首选框架。然而,在使用Spark的过程中,我们会遇到各种各样的问题,从性能优化到算子使用等。本文将围绕Spark的一些核心问题进行详细解答,帮助大家更好地理解和运用Spark。Spark性能优化策略Spark性能优化是提升作业执行效率的关键,主要可以从以下几个方面入手:首先,资源配置优化至关重要。合理设置Exec
- 大数据领域如何用好 Eureka 实现服务治理
大数据洞察
大数据eureka云原生ai
大数据领域Eureka服务治理实践:架构适配与最佳实践元数据框架标题大数据领域Eureka服务治理实践:架构适配、实现机制与最佳实践关键词Eureka;服务治理;大数据分布式系统;服务发现;负载均衡;故障恢复;云原生适配摘要Eureka作为Netflix开源的AP型服务发现组件,以其高可用性、动态适配性和轻量级特性,成为微服务架构的核心工具。然而,大数据领域的超大规模分布式、高并发数据流动、动态资
- Eureka在大数据推荐系统中的服务治理实践
大数据洞察
eureka大数据云原生ai
Eureka在大数据推荐系统中的服务治理实践:从理论到落地的全面解析元数据框架标题:Eureka在大数据推荐系统中的服务治理实践:从理论到落地的全面解析关键词:Eureka;服务治理;大数据推荐系统;分布式架构;服务发现;高可用性;动态扩展摘要:本文结合Eureka的核心特性与大数据推荐系统的需求,从第一性原理推导、架构设计、实现机制到实际应用,全面解析Eureka在推荐系统中的服务治理实践。通过
- Eureka 为大数据领域服务治理带来的新思路
大数据洞察
大数据AI应用大数据与AI人工智能eureka大数据云原生ai
Eureka为大数据领域服务治理带来的新思路关键词:Eureka,大数据,服务治理,分布式系统,微服务摘要:本文深入探讨了Eureka为大数据领域服务治理带来的新思路。首先介绍了大数据领域服务治理的背景和现状,阐述了Eureka的核心概念与工作原理。接着详细分析了Eureka核心算法原理,结合Python代码进行说明,并给出相关数学模型和公式。通过项目实战案例,展示了Eureka在大数据服务治理中
- 新能源汽车大数据画像:从零到一实现K-means用户分群
新能源汽车研发&测试入门指南
学习笔记新星杯+王者杯汽车大数据kmeans
基于大数据分析的新能源汽车画像研究全攻略:从原理到实战前言在"软件定义汽车"的时代浪潮下,新能源汽车正经历着从交通工具向智能移动终端的进化。本文将带你深入探索如何通过大数据技术构建精准的用户与产品画像,揭秘车企数字化转型的核心技术。全文涵盖完整的技术链路和实战案例,助你快速掌握这一前沿领域。关键词:新能源汽车;用户画像挖掘;大数据分析;K-means聚类目录一、大数据分析技术基石二、新能源汽车画像
- Flink在物联网实时大数据处理中的最佳实践
大数据洞察
大数据AI应用大数据与AI人工智能flink物联网strutsai
Flink在物联网实时大数据处理中的最佳实践关键词:Flink、物联网、实时大数据处理、最佳实践、数据流摘要:本文围绕Flink在物联网实时大数据处理中的最佳实践展开。首先介绍了相关背景知识,接着深入浅出地解释了Flink、物联网和实时大数据处理的核心概念以及它们之间的关系。然后详细阐述了Flink处理物联网数据的核心算法原理、数学模型和公式。通过实际项目案例,展示了开发环境搭建、代码实现和解读。
- 信小易官网查询入口:信小易大数据信用检测平台!
无忧达人
信小易一个全能型的信用软件,信小易在一几年就上线的大数据信用平台,有着专业的大数据信用行业经验,从个人信用到企业信用,车辆大数据信小易全都有涉足,是一个非常完善的平台。信小易官网查询入口,对于想使用信小易的人来说,第一步我们需要找到信小易的查询入口,然后就可以进行大数据信用的查询服务了,可以查询自己的信用情况,查询结果也是非常准确。信小易查询入口放在文末了,划到文章结尾就可以看到查询入口信小易是一
- 【学术会议投稿】Vue.js组件开发实战:从零构建高效可复用组件
小周不想卷
艾思科蓝学术会议投稿vue.js
【IEEE出版|会后3-4个月EI检索】第三届云计算、大数据应用与软件工程国际学术会议(CBASE2024)_艾思科蓝_学术一站式服务平台更多学术会议请看:https://ais.cn/u/nuyAF3目录引言一、Vue.js组件开发基础二、构建高效可复用组件三、Vue.js组件的高级特性四、Vue.js的优点与缺点Vue.js的优点Vue.js的缺点引言在现代前端开发中,Vue.js凭借其简洁的
- 时序数据库的工业级对决:对比 Apache IoTDB 和 InfluxDB
时序数据说
时序数据库apacheiotdb数据库大数据开源
在数字化浪潮中,物联网(IoT)与工业大数据领域蓬勃发展,时序数据呈爆发式增长。时序数据库作为管理这类数据的核心工具,其性能、功能和适应性直接影响到整个系统的运行效率与价值实现。ApacheIoTDB和InfluxDB作为时序数据库领域的佼佼者,被广泛应用于各类场景。深入剖析二者区别,对开发者、企业架构师和数据管理者而言,不仅能为项目选型提供科学依据,还能助力挖掘数据的最大价值。一、诞生背景与社区
- 时序数据库IoTDB与OpenTSDB的对比分析
时序数据说
时序数据库iotdbopentsdb数据库大数据
在物联网与大数据场景下,时序数据库的选择对于系统性能、数据存储与分析能力至关重要。本文将围绕ApacheIoTDB与OpenTSDB这两款开源时序数据库进行对比分析,从分布式架构、部署易用性、分析与计算能力、性能表现以及产品迭代与维护情况五个关键维度展开,旨在为面临海量设备接入和实时数据分析需求的物联网架构师提供客观的技术选型参考。一、分布式架构ApacheIoTDB:IoTDB原生支持分布式
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key