在run过程中的集成一些操作,比如输出log,保存,summary 等
基类一般用在infer阶段,训练阶段使用它的子类
tf.train.MonitoredTrainingSession
MonitoredTrainingSession(
master='',
is_chief=True,
checkpoint_dir=None,
scaffold=None,
hooks=None,
chief_only_hooks=None,
save_checkpoint_secs=600,
save_summaries_steps=USE_DEFAULT,
save_summaries_secs=USE_DEFAULT,
config=None,
stop_grace_period_secs=120,
log_step_count_steps=100,
max_wait_secs=7200
)
官方例子
saver_hook = CheckpointSaverHook(...)
summary_hook = SummarySaverHook(...)
with MonitoredSession(session_creator=ChiefSessionCreator(...),
hooks=[saver_hook, summary_hook]) as sess:
while not sess.should_stop():
sess.run(train_op)
首先,当MonitoredSession初始化的时候,会按顺序执行下面操作:
然后,当run()函数运行的时候,按顺序执行下列操作:
最后,当调用close()退出时,按顺序执行下列操作:
所以这些钩子函数就是重点关注的对象
tf.train.LoggingTensorHook 官方说明
Prints the given tensors every N local steps, every N seconds, or at end.
__init__(
tensors,
every_n_iter=None,
every_n_secs=None,
formatter=None
)
用法举例
# Set up logging for predictions
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=50)
tf.train.SummarySaverHook
Saves summaries every N steps
__init__(
save_steps=None,
save_secs=None,
output_dir=None,
summary_writer=None,
scaffold=None,
summary_op=None
)
output_dir 填 路径
summary_op 填 tf.summary.merge_all
tf.train.CheckpointSaverHook
MonitoredTrainingSession 只有 save_checkpoint_secs, 没有按step保存的选项
* Saves checkpoints every N steps or seconds
__init__(
checkpoint_dir,
save_secs=None,
save_steps=None,
saver=None,
checkpoint_basename='model.ckpt',
scaffold=None,
listeners=None
)
必填 saver, save_secs 或者 save_steps
tf.train.NanTensorHook
感觉是用来调试的,加到训练过程中可能会拖慢train
__init__(
loss_tensor,
fail_on_nan_loss=True
)
tf.train.FeedFnHook
看着像用来产生 feed_dict
Runs feed_fn and sets the feed_dict accordingly
__init__(feed_fn)
tf.train.GlobalStepWaiterHook
分布式用
tf.train.ProfilerHook
This hook delays execution until global step reaches to wait_until_step. It is used to gradually start workers in distributed settings. One example usage would be setting wait_until_step=int(K*log(task_id+1)) assuming that task_id=0 is the chief
tf.train.MonitoredSession
https://www.tensorflow.org/versions/master/api_docs/python/tf/train/MonitoredSession
resnet_main.py
https://github.com/tensorflow/models/blob/master/research/resnet/resnet_main.py
tf.train.MonitoredTrainingSession
https://www.tensorflow.org/versions/master/api_docs/python/tf/train/MonitoredTrainingSession
使用自己的数据集进行一次完整的TensorFlow训练
https://zhuanlan.zhihu.com/p/32490882
tf.train.LoggingTensorHook
https://www.tensorflow.org/api_docs/python/tf/train/LoggingTensorHook
tf.train.SummarySaverHook
https://www.tensorflow.org/versions/master/api_docs/python/tf/train/SummarySaverHook
tf.train.CheckpointSaverHook
https://www.tensorflow.org/versions/master/api_docs/python/tf/train/CheckpointSaverHook
tf.train.NanTensorHook
https://www.tensorflow.org/versions/master/api_docs/python/tf/train/NanTensorHook#__init__