python_scrapy爬虫_jieba分词_数据可视化 阶段总结报告

第一次写于 20170328 23:36 寝室


序言

关键词:
python scrapy爬虫 搜狗微信 jieba分词 数据可视化 wordcloud_plotly

学习过程中参考过的文章或网站链接:
- Python 基础教程 -菜鸟教程

  • 有哪些比较好的中文分词方案? -知乎
  • jieba分词 -github

  • 10行Python代码的词云 -知乎

  • Python中除了matplotlib外还有哪些数据可视化的库? -知乎
  • https://plot.ly/python/

  • http://weixin.sogou.com/

我完成的完整工程文件:

  • python_weixin -https://github.com/RenjiaLu9527/python_weixin/

正文

这段时间学习的内容就是python爬虫、分词、以及数据可视化;以爬取‘搜狗微信’中的微信热门文章为例分析;这个小工程我将其分成三个部分:

  1. 获取数据:使用python scrapy框架定制爬虫,爬取网站数据 并存入Mysql数据库
  2. 处理数据:使用python jieba分词模块,处理Mysql数据库中储存的微信文本并存入Mysql
  3. 数据可视化:使用plotly 和 wordcloud 将分词数据可视化
  4. 写总结
    第一步中:scrapy资料比较多,勉强能做个能用的爬虫,代码模块化目前写的很乱,由于前个星期写的这个python文件,当时遇到的问题没有记录,在此就不多说;
    部分代码 weixin_TextSpider类
# -*- coding: utf-8 -*-
# @Time  : 2017/03/21 10:54
# @Author   : RenjiaLu

import time
import scrapy
from scrapy import Request
from scrapy.spiders import Spider
from scrapy.selector import Selector
from scrapyspider.items  import weixin_Text

global  crawlNum    #爬取数量
global  outputfile
global  SQL_StmtFile
global  pageKind 
global  pageNum 


str = time.strftime('%Y_%m_%d__%H_%M_%S',time.localtime(time.time()))

crawlNum = 21
outputfile = open("log_%s.txt"%str, "a+")
SQL_StmtFile = open("SQLstmt_%s.txt"%str, "a+")
pageKind = 0
pageNum = 0

SQL_StmtFile.write("USE db_weixin;\n")

class weixin_TextSpider(Spider):

    name = 'weixin.sogou'
    handle_httpstatus_list = [404, 500]
    download_delay = 1
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.143 Safari/537.36',
    }

    def start_requests(self):
        url = 'http://weixin.sogou.com/'
        #url="http://weixin.sogou.com/pcindex/pc/pc_3/15.html"
        yield Request(url, headers=self.headers)

    def parse(self, response):

        global crawlNum
        global outputfile
        global  SQL_StmtFile
        global pageKind
        global pageNum
        item = weixin_Text()

        try:
            if response.status in self.handle_httpstatus_list:
                outputfile.write(str(response.status))
                raise Exception(Exception,response.status)

            #outputfile.write(str(response.status))

            if pageNum == 0 :
                #第 0 页
                weixinSelector = response.xpath('//ul[@class="news-list"]/li')
            else:
                #第 1+ 页
                weixinSelector = response.xpath('//body//li')

            if weixinSelector:
                #获取到了 一个weeixin_Text的 List
                for weixin in weixinSelector:
                    item['title'] = weixin.xpath(
                        './/div[@class="txt-box"]/h3/a/text()').extract()[0].encode("utf-8").replace(",", ",").replace("\"","“").replace("\'","‘")
                    item['summary'] = weixin.xpath(
                        './/p/text()').extract()[0].encode("utf-8").replace(",", ",").replace("\"","“").replace("\'","‘")
                    item['name_GZH'] = weixin.xpath('.//div[@class =\"s-p\"]/a/text()').extract()[0].encode("utf-8")
                    item['classifyKind'] = pageKind
                    item['publishTime'] = "-"
                    item['scrapyCrawl_Time'] = time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))

                    SQL_StmtFile.write("INSERT INTO weixin_Text(id,classifyKind,scrapyCrawl_Time,title,name_GZH,publishTime,summary) "+\
                        " VALUE(\"%s\",\"%s\",\"%s\",\"%s\",\"%s\",\"%s\",\"%s\");\n" 
                        %("NULL",   item['classifyKind'],item['scrapyCrawl_Time'],item['title'],item['name_GZH'],item['publishTime'],item['summary']))
                    yield item
            else:
                outputfile.write("###[LOG] 当前页面没有匹配到内容 pageKind=%d,pageNum=%d \n"%(pageKind,pageNum))
                pageNum = crawlNum
        except Exception as e:
            print e
            outputfile.write("###[LOG] 异常 e=%s\n\n"%e)
            pageNum = crawlNum
        else:
            outputfile.write("正常")
        finally:

            if pageKind < crawlNum  :
                if pageNum < crawlNum:
                    pageNum +=1
                    url_next= 'http://weixin.sogou.com/pcindex/pc/pc_%d/%d.html' %(pageKind,(pageNum))
                else:
                    #一个分类栏的 第 0 页
                    pageKind +=1
                    pageNum = 0
                    url_next ='http://weixin.sogou.com/pcindex/pc/pc_%d/pc_%d.html'%(pageKind,pageKind)

                outputfile.write("--下一个链接 pageKind=%d url=%s \n"%(pageKind,url_next))

            else:
                outputfile.write("爬取结束 pageKind=%d" %pageKind)
                outputfile.close()
                SQL_StmtFile.close()

            next_url = url_next
            if next_url:
                yield Request(next_url, headers=self.headers)


爬虫运行了十几次,每次爬一遍‘搜狗微信 http://weixin.sogou.com/’,只能得到5k左右的文章,而且每隔两小时文章更新数量只有几百篇;所以我在三天的时间里共运行十几次,获取文章 89990篇文章;去重后剩下15667
python_scrapy爬虫_jieba分词_数据可视化 阶段总结报告_第1张图片
基于这15k篇原始数据开始分析;
数据库建表如下:
python_scrapy爬虫_jieba分词_数据可视化 阶段总结报告_第2张图片

四个视图:
这里写图片描述
第一个视图弃用;
第二个视图:从 t_splitwords,和 weixin_text 两个表中按weixinText分类板块分组,并按frequency大小排序;可以查看每个分类板块 最多重复出现的词
第三个视图:weixin_Text 去重后的视图,去重条件如下:weixin_text.classifyKind, weixin_text.title, weixin_text.name_GZH, weixin_text.summary 根据这四个字段选出 不重复独一无二的 weixinText
第四个视图:表 t_splitwords(100w 条数据) 去重 并统计重复次数 以t_splitwords.value, t_splitwords.titleOrSummary, t_splitwords.partOfSpeech三个字段分组

其中 t_splitwords表数据量达到 100w ,一条简单的查询语句要运行几十秒,第一次接触这个量级,不得不开始注意数据库的查询优化

第二步调用jieba分词分析并存入mysql数据库
中文分词知乎的讨论:https://www.zhihu.com/question/19578687
我选用jieba分词
例子

#encoding=utf-8
import jieba

seg_list = jieba.cut("我来到北京清华大学",cut_all=True)
print "Full Mode:", "/ ".join(seg_list) #全模式

seg_list = jieba.cut("我来到北京清华大学",cut_all=False)
print "Default Mode:", "/ ".join(seg_list) #精确模式

seg_list = jieba.cut("他来到了网易杭研大厦") #默认是精确模式
print ", ".join(seg_list)

seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") #搜索引擎模式
print ", ".join(seg_list)

输出

【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学

【精确模式】: 我/ 来到/ 北京/ 清华大学

【新词识别】:他, 来到, 了, 网易, 杭研, 大厦    (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)

【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造

部分代码:utils_parseString.py 解析从mysql获取的微信文本并再次存入mysql

# -*- coding: utf-8 -*-
# @Time  : 2017/03/22 15:54
# @Author   : RenjiaLu

import sys
reload(sys)
sys.setdefaultencoding('utf-8')

import jieba
import jieba.posseg  
from utils_mysql import *

def parseAndSaveString(string,titleOrSummary,stringId,db):
    """parse"""
    try:
        seg_list = jieba.cut(string,cut_all=True)
    except Exception as e:
        myException("###1全模式分词","stringId:%d titleOrSummary:%s string:%s"%(stringId,titleOrSummary,string),e)
        return 
    else:
        """第一次分词成功"""
        for a_seg in seg_list:
            if '' == a_seg:
                continue
            try:
#           posseg_list  = jieba.posseg.cut(a_seg)
            posseg_list = a_seg
            except Exception as e:
                myException("###2词性分词","stringId:%d titleOrSummary:%s string:%s a_seg:%s"%(stringId,titleOrSummary,string,a_seg),e)
                continue
            else:
                """第二次分词成功"""
                for posseg_word in  posseg_list:
                    if '' == posseg_word:
                        continue
#                   print posseg_word.word,posseg_word.flag
                    print posseg_word

                    try:
#                       indexOfString = string.find(posseg_word.word)
#                       partOfSpeech = posseg_word.flag
                        indexOfString = string.find(posseg_word)
                        partOfSpeech = "-"
                        """save"""
#                       SQLsttmnt = "INSERT INTO t_splitwords VALUE (\'%s\',\'%s\',%d,%d,\'%s\',\'%s\') ;" \
#                                   %("NULL",posseg_word.word,stringId,indexOfString,titleOrSummary,partOfSpeech)
                        SQLsttmnt = "INSERT INTO t_splitwords VALUE (\'%s\',\'%s\',%d,%d,\'%s\',\'%s\') ;" \
                                    %("NULL",posseg_word,stringId,indexOfString,titleOrSummary,partOfSpeech)
                        cursor = executeMysqlSttmnt(db,SQLsttmnt)

                    except Exception as e:
                        myException("###构造数据并储存","stringId:%d titleOrSummary:%s string:%s posseg_word" \
                                    ":%s"%(stringId,titleOrSummary,string,posseg_word),e)
                        continue
                    else:
                        pass
                    finally:
                        pass

部分代码:utils_mysql.py 连接数据库工具函数集合

# -*- coding: utf-8 -*-
# @Time  : 2017/03/22 16:54
# @Author   : RenjiaLu

import time
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
import MySQLdb

str = time.strftime('%Y_%m_%d__%H_%M_%S',time.localtime(time.time()))
outputfile = open("log/log_%s.txt"%str, "a+")

def cnnctMysql(pHost="localhost",pUser="root",pPasswd="",pDb="db_weixin",pPort=3306,pCharset='utf8'):
    """连接 mysql 数据库"""
    try:
        db = MySQLdb.connect(host=pHost,user= pUser,passwd=pPasswd,db=pDb,port=pPort,charset=pCharset)
        db.autocommit(1)
        return db
    except Exception as e:
        myException("###连接数据库","",e)
    else:
        print '操作成功'
    finally:
        pass


def executeMysqlSttmnt(db,sqlSttmnt):
    """执行 mysql 语句 
        返回 cursor
    """
    try:
        cursor = db.cursor()
        cursor.execute(sqlSttmnt)   
        return cursor
    except Exception as e:
        myException("###执行Mysql语句",sqlSttmnt,e)
        db.rollback() # 回滚事件
    else:
        print '操作成功'
    finally:
        pass


def closeMysql(db):
    """关闭数据库"""
    try:
        db.close()
    except Exception as e:
        myException("###关闭数据库","",e)

    else:
        print '操作成功'
    finally:
        pass

def myException(whichStep,log,e):
    str = "###myException whichstep:%s log:%s e:%s\n"%(whichStep,log,e)
    print str
    try:
        outputfile.write(str)
    except Exception as e:
        print e

使用很简单,我先全模式分词再对其做词性分析,这里有重复分词的问题,这也是数据量这么大的原因,重复次数最多的都是单字,所以后面的可视化操作我略去了单字词条,只分析两个字符及以上的词
python_scrapy爬虫_jieba分词_数据可视化 阶段总结报告_第3张图片

第三步: 数据可视化,
plotly数据可视化效果真不错,虽然看了官网也没有找到详细的属性介绍,目前只使用了其中bar类图

# -*- coding: utf-8 -*-
# @Time  : 2017/03/26 08:54
# @Author   : RenjiaLu


import plotly.plotly as py
import plotly.graph_objs as go
import plotly.offline
from plotly.graph_objs import *
# Generate the figure
import plotly.plotly as py
import plotly.graph_objs as go

list_articalClssfy= ['热门', '推荐',  '段子手','养身堂','私房话',\
                    '八卦精','爱生活','财经迷','汽车迷','科技咖',\
                    '潮人帮','辣妈帮','点赞党','旅行家','职场人',\
                    '美食家','古今通','学霸族','星座控','体育迷']
list_articalNum   = [904,854,842,907,639,\
                    1041,676,966,773,1011,\
                    1005,850,720,624,540,\
                    720,729,586,377,903]
# frequency >= 5
list_articalWordsNum=[1584,1645,1182,1810,1006,\
                    1877,1241,1983,1525,1957,\
                    1708,1477,1180,1169,1086,\
                    1358,1347,1261,627,1751]

trace_articalNum = go.Bar(
    x=list_articalClssfy,
    y=list_articalNum,
    name='爬取文章数'
)
trace__articalWordsNum = go.Bar(
    x=list_articalClssfy,
    y=list_articalWordsNum,
    name='文章分词数'
)

data = [trace_articalNum, trace__articalWordsNum]
layout = go.Layout(
    barmode='stack',
    title="data_to_view_1 爬取文章数量与分词数量(frequency>=5)"
)

fig = go.Figure(data=data, layout=layout)

plotly.offline.plot(fig, filename = 'view_html/data_to_view_1.html')

#py.iplot(fig, filename='grouped-bar')

生成:https://plot.ly/~RenjiaLu/2/
python_scrapy爬虫_jieba分词_数据可视化 阶段总结报告_第4张图片

然后抽取这二十个分类板块中频度前十的词分析
这里取其中的三个分类,如图
python_scrapy爬虫_jieba分词_数据可视化 阶段总结报告_第5张图片
python_scrapy爬虫_jieba分词_数据可视化 阶段总结报告_第6张图片
python_scrapy爬虫_jieba分词_数据可视化 阶段总结报告_第7张图片
代码已上传 github,见文章开头

词云 wordcloud 模块 genWordCloud.py

# -*- coding: utf-8 -*-
# @Time  : 2017/03/25 19:54
# @Author   : RenjiaLu

import sys
reload(sys)
sys.setdefaultencoding('utf-8')

import os
import matplotlib.pyplot as plt
from os import path
from scipy.misc import imread
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
import locale

def genWordCloud(dict_data,rootPath = path.dirname(__file__),imgName="ico1.jpg",saveFileName="wordcloud_init.png"):

    #设置语言
    locale.setlocale(locale.LC_ALL, 'chs')

    #字体文件路径
    fontPath = "H:/Python27/python_workplace/dataToview/font/msyh.ttc"

    #当前工程文件目录
    d = rootPath 

    # 设置背景图片
    alice_coloring = imread(path.join(d, imgName))

    #构建词云框架 并载入数据
    wc = WordCloud(font_path = fontPath,#字体
            background_color="white", #背景颜色
            max_words=10000,# 词云显示的最大词数
            mask=alice_coloring,#设置背景图片
            #stopwords=STOPWORDS.add("said"),
            width=900,
            height=600,
            scale=4.0,
            max_font_size=200, #字体最大值
            random_state=42).fit_words(dict_data)

    #载入 DICT 数据
    #wc.generate_from_frequencies(dict_data)

    #从背景图片生成颜色值
    image_colors = ImageColorGenerator(alice_coloring)

    # 以下代码显示图片
    plt.imshow(wc)
    plt.axis("off")
    plt.show()

    #保存图片
    wc.to_file(path.join(d,saveFileName))
    pass

这里遇到的词云中文乱码的问题,我记录到了另一篇文章中http://blog.csdn.net/renjialu9527/article/details/65937731
贴上生成的词云python_scrapy爬虫_jieba分词_数据可视化 阶段总结报告_第8张图片

效果还可以


最后

熟悉了一遍流程:
爬虫找数据-mysql建表建视图优化存取数据-python分析数据可视化操作
20170329 11:39
end

你可能感兴趣的:(小项目)