Python自学 day05 ---Numpy&Pandas 数据结构

同之前

先在此放一些大佬写好的总结吧~

转载自大佬:zhang_xinxiu -->【Machine learning(python篇)】-几种常用的数据结构

渔单渠 --> python--Numpy and Pandas 基本语法

以下是本菜鸟练习的笔记..

# 
# import numpy as np
#
# array = np.array([[1, 2, 3],
#                 [2, 3, 4]])
# print(array)
#
# print('number of dim:', array.ndim)     # 维度
# print('shape:',array.shape)             # 行数 列数
# print('size:',array.size)               # 元素个数
# 

# 
# import numpy as np
# a = np.array([2, 23, 4], dtype=np.int)  # 格式int,int32,int64,float32/54等
# print(a)            # 没有逗号分隔
# print(a.dtype)      # 输出格式

# a = np.array([[1, 2 ,3],
#               [2, 3 ,4]])
# a0 = np.zeros((3,4))        # 生成一个全部为0的多维矩阵
# a1 = np.ones((3,4))         # 生成一个全部为1的多维矩阵
# a2 = np.arange(10, 20, 2)   # 生成range数组,起始+结束+步长
# a3 = np.arange(12).reshape((3,4))   # 生成range数组,多维化
# a4 = np.linspace(1 ,10, 20).reshape((4,5))         # 生成线段,起始+结束+段数 可重新定义形状
# print(a4)
# 

# 
# import numpy as np

# a = np.array([10, 20, 30, 40])
# b = np.array([1, 2, 3, 4])

# print(a,b)
# c1 = a-b
# print(c1)
# c2 = b**2
# print(c2)
# c3 = 10*np.tan(a)       # 三角函数
# print(c3)
# print(b<3)      # >,< ,==,!=

# a = np.array([[10, 20],
#              [20, 30]])
# b = np.array([[1, 2],
#              [2, 3]])
# c = a*b     # 矩阵内对应元素相乘
# c_dot = np.dot(a,b)         # 矩阵乘法
# c_dot2 = a.dot(b)           # 矩阵乘法第二种方式
#
# print(c)
# print(c_dot)
# print(c_dot2)

# a = np.random.random((2,4))     # 随机生成二行四列的值
# print(a)
# print(np.sum(a))
# print(np.sum(a,axis=1))         # 每一行中求和
# print(np.min(a))
# print(np.min(a,axis=0))         # 每一列中求最小值
# print(np.max(a))
# 

# 
# import numpy as np
#
# A = np.arange(2,14).reshape((3,4))
#
# print(A)
# print(np.argmin(A))         # 最小索引
# print(np.argmax(A))         # 最大索引
# print(np.mean(A))           # 平均值
# print(np.average(A))        # 平均值第二种方式
# print(np.median(A))         # 中位数
# print(np.cumsum(A))             # 前几位的累计值
# print(np.diff(A))               # 累差值
# print(np.nonzero(A))            # 非0数
# print(np.sort(A))                   # 逐行排序
# print(np.transpose(A))                  # 转向,行变列,列变行
# print((A.T).dot(A))                     # 转向并乘
# print(np.clip(A, 5, 9))                    # 小于5的变成5,大于9的变成9,5-9之间的不变
# print(np.mean(A,axis=0))                    # 每一列的平均值 axis=1 每一行
# 

# 
# import numpy as np
#
# A = np.arange(3,15).reshape((3,4))
# print(A)
# print(A[2])     # 索引第二行
# print(A[1][1])  # 索引第一行第一列
# print(A[2,1])   # 索引第二行第一列,第二种表现方法
# print(A[:,1])   # 第一列所有数
# print(A[1,1:3]) # 第一行索引的第一个到第三个索引之间的数
# for row in A:
#     print(row)      # 打印每一行
# for column in A.T:
#     print(column)   # 通过对称-》反向 打印每一列

# print(A.flatten())     # 迭代输出
# for item in A.flat:
#     print(item)     # 打印每一行的数(单个值)
# 

# 
# import numpy as np
#
# A = np.array([1, 1, 1])[:,np.newaxis]
# B = np.array([2, 2, 2])[:,np.newaxis]
#
# # C = np.vstack((A,B))
# # print(C)         # 上下合并
# # print(A.shape, C.shape)         # 两个序列合并成2行三列的合并
# # D = np.hstack((A,B))
# # print(D)        # 左右合并
# # print(A.shape, D.shape)
#
# # 把一个横向的序列变成竖向的序列。用Tran没用
# # print(A[:,np.newaxis])
# # A = np.array([1, 1, 1])[:,np.newaxis]
#
# C = np.concatenate((A,B,B,A),axis=0)        # 多个Array的合并 axis=0 纵向合并
# C1 = np.concatenate((A,B,B),axis=1)        # 多个Array的合并 axis=0 横向合并
# print(C1)
# 

# 
# import numpy as np
#
# A = np.arange(12).reshape((3,4))
# print(A)

# 只能进行等量的分割 比如4分成1,2,4部分
# print(np.split(A,2,axis=1))     # 纵向分割 分成两部分
# print(np.split(A,3,axis=0))     # 横向分割 分成三部分

# 1.使用array_split 进行不等量的分割
# print(np.array_split(A,3,axis=1))

# 2.使用v/hsplit方法 进行不等量的分割
# print(np.vsplit(A,3))   # 纵向分割成三块
# print(np.hsplit(A,2))   # 横向分割成两块
# 

# 
# import numpy as np
#
# A = np.arange(4)
# print(A)
#
# # B = A       # 指针传递,B就是A
# B = A.copy()    # 把值传过去了 但是没有关联起来
# 

# 
# import pandas as pd
# import numpy as np

# s = pd.Series([1, 3 ,6, np.NaN,44,1])
# print(s)
# dates = pd.date_range('20181104',periods=6)
# print(dates)
# df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=['a','b','c','d'])
# print(df)

# 矩阵
# df1 = pd.DataFrame(np.arange(12).reshape((3,4)))
# print(df1)

# 字典
# df2 = pd.DataFrame({'A' : 1.,
#                     'B' : pd.Timestamp('20130102'),
#                     'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
#                     'D' : np.array([3] * 4,dtype='int32'),
#                     'E' : pd.Categorical(["test","train","test","train"]),
#                     'F' : 'foo'})
# print(df2)
# print(df2.dtypes)           # 查看列的格式
# print(df2.index)            # 查看列的索引
# print(df2.columns)          # 查看列的名字
# print(df2.values)           # 查看值
# print(df2.describe())       # 运算数字形式的平均值 方差等数据
# print(df2.T)                # Transport 对称
# print(df2.sort_index(axis=1, ascending=False))      # 纵向(按列),倒叙排序index
# print(df2.sort_values(by='E'))                      # 对'E'这一列的值进行排序
# 

# 
# import pandas as pd
# import numpy as np
#
# dates = pd.date_range('20181104',periods=6)
# df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates,columns=['A','B','C','D'])

# print(df['A'],df.A)     # 选择列
# print(df[0:3],df['20181104':'20181106'])    # 选择行

# select by lable: loc          纯标签
# print(df.loc['20181105'])       # 根据标签选择 行
# print(df.loc[:,['A','B']])        # 选择所有行和指定列


# select by position: iloc      纯数字
# print(df.iloc[3])               # 第三行
# print(df.iloc[3,1])             # 第三行第一列
# print(df.iloc[[1,3,5],1:3])     # 选择指定行(不连续)和列


# mixed selection ix        混合上两种
# print(df.ix[:3,['A','C']])


# Bollean indexing          计算检索
# print(df[df.A>8])
# 

# 
# import pandas as pd
# import numpy as np
#
# dates = pd.date_range('20181104',periods=6)
# df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates,columns=['A','B','C','D'])

# df.iloc[2,2] = 1111         # 根据索引修改值
# df.loc['20181103','B'] = 2222       # 根据标签改值
# df.B[df.A>4] = 0              # 根据条件改值
# df['F'] = np.NaN
# df['E'] = pd.Series([1,2,3,4,5,6],index=pd.date_range('20181104',periods=6))
# print(df)
# 

# 
# import pandas as pd
# import numpy as np
#
# dates = pd.date_range('20181104',periods=6)
# df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates,columns=['A','B','C','D'])
# df.iloc[0,1] = np.nan       # 假设是丢失掉的数据
# df.iloc[1,2] = np.nan

# print(df.dropna(axis=0,how='any'))
# 丢掉行 axis=1:丢掉列
# 有任何一个就丢掉 how = 'any' how ='all' 全部为nan 才丢掉

# print(df.fillna(value=0))       # NuN值 填充为0
# print(df.isnull())              # 返回是否缺失数据
# print(np.any(df.isnull() == True))      # 返回是否缺失数据
# 

# 
# import pandas as pd
# import numpy as np

# data = pd.read_pickle('usrs_info.pickle')
# print(data)

# data.to_pickle('temp.pickle')
# 

# 
# import pandas as pd
# import numpy as np

# concatennating
# 
#定义资料集
# df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'])
# df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
# df3 = pd.DataFrame(np.ones((3,4))*2, columns=['a','b','c','d'])

#concat纵向合并
# res = pd.concat([df1, df2, df3], axis=0)

#打印结果
# print(res)
#     a    b    c    d
# 0  0.0  0.0  0.0  0.0
# 1  0.0  0.0  0.0  0.0
# 2  0.0  0.0  0.0  0.0
# 0  1.0  1.0  1.0  1.0
# 1  1.0  1.0  1.0  1.0
# 2  1.0  1.0  1.0  1.0
# 0  2.0  2.0  2.0  2.0
# 1  2.0  2.0  2.0  2.0
# 2  2.0  2.0  2.0  2.0

# ignore_index(重置index)
#承上一个例子,并将index_ignore设定为True
# res = pd.concat([df1, df2, df3], axis=0, ignore_index=True)

#打印结果
# print(res)
#     a    b    c    d
# 0  0.0  0.0  0.0  0.0
# 1  0.0  0.0  0.0  0.0
# 2  0.0  0.0  0.0  0.0
# 3  1.0  1.0  1.0  1.0
# 4  1.0  1.0  1.0  1.0
# 5  1.0  1.0  1.0  1.0
# 6  2.0  2.0  2.0  2.0
# 7  2.0  2.0  2.0  2.0
# 8  2.0  2.0  2.0  2.0
# 

# join,['inner','outer']
# 
#定义资料集
# df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'], index=[1,2,3])
# df2 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d','e'], index=[2,3,4])

#纵向"外"合并df1与df2
# res = pd.concat([df1, df2], axis=0, join='outer')
# inner 会裁剪掉不同的地方 只保留相同的部分

# print(res)
#     a    b    c    d    e
# 1  0.0  0.0  0.0  0.0  NaN
# 2  0.0  0.0  0.0  0.0  NaN
# 3  0.0  0.0  0.0  0.0  NaN
# 2  NaN  1.0  1.0  1.0  1.0
# 3  NaN  1.0  1.0  1.0  1.0
# 4  NaN  1.0  1.0  1.0  1.0

#依照`df1.index`进行横向合并, 会缺少df2的部分数据
# res = pd.concat([df1, df2], axis=1, join_axes=[df1.index])

#打印结果
# print(res)
#     a    b    c    d    b    c    d    e
# 1  0.0  0.0  0.0  0.0  NaN  NaN  NaN  NaN
# 2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
# 3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0

#移除join_axes,并打印结果
# res = pd.concat([df1, df2], axis=1)
# print(res)
#     a    b    c    d    b    c    d    e
# 1  0.0  0.0  0.0  0.0  NaN  NaN  NaN  NaN
# 2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
# 3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
# 4  NaN  NaN  NaN  NaN  1.0  1.0  1.0  1.0
# 

# append
# 
#定义资料集
# df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'])
# df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
# df3 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
# s1 = pd.Series([1,2,3,4], index=['a','b','c','d'])

#将df2合并到df1的下面,以及重置index,并打印出结果
# res = df1.append(df2, ignore_index=True)
# print(res)
#     a    b    c    d
# 0  0.0  0.0  0.0  0.0
# 1  0.0  0.0  0.0  0.0
# 2  0.0  0.0  0.0  0.0
# 3  1.0  1.0  1.0  1.0
# 4  1.0  1.0  1.0  1.0
# 5  1.0  1.0  1.0  1.0

#合并多个df,将df2与df3合并至df1的下面,以及重置index,并打印出结果
# res = df1.append([df2, df3], ignore_index=True)
# print(res)
#     a    b    c    d
# 0  0.0  0.0  0.0  0.0
# 1  0.0  0.0  0.0  0.0
# 2  0.0  0.0  0.0  0.0
# 3  1.0  1.0  1.0  1.0
# 4  1.0  1.0  1.0  1.0
# 5  1.0  1.0  1.0  1.0
# 6  1.0  1.0  1.0  1.0
# 7  1.0  1.0  1.0  1.0
# 8  1.0  1.0  1.0  1.0

#合并series,将s1合并至df1,以及重置index,并打印出结果
# res = df1.append(s1, ignore_index=True)
# print(res)
#     a    b    c    d
# 0  0.0  0.0  0.0  0.0
# 1  0.0  0.0  0.0  0.0
# 2  0.0  0.0  0.0  0.0
# 3  1.0  2.0  3.0  4.0
# 
# 

# 
# merge合并 利用索引合并
# import pandas as pd

# 
#定义资料集并打印出
# left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
#                              'A': ['A0', 'A1', 'A2', 'A3'],
#                              'B': ['B0', 'B1', 'B2', 'B3']})
# right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
#                               'C': ['C0', 'C1', 'C2', 'C3'],
#                               'D': ['D0', 'D1', 'D2', 'D3']})

#依据key column合并,并打印出
# res = pd.merge(left, right, on='key')
#
# print(res)


# #定义资料集并打印出
# left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
#                       'key2': ['K0', 'K1', 'K0', 'K1'],
#                       'A': ['A0', 'A1', 'A2', 'A3'],
#                       'B': ['B0', 'B1', 'B2', 'B3']})
# right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
#                        'key2': ['K0', 'K0', 'K0', 'K0'],
#                        'C': ['C0', 'C1', 'C2', 'C3'],
#                        'D': ['D0', 'D1', 'D2', 'D3']})
#
# print(left)
# #    A   B key1 key2
# # 0  A0  B0   K0   K0
# # 1  A1  B1   K0   K1
# # 2  A2  B2   K1   K0
# # 3  A3  B3   K2   K1
#
# print(right)
# #    C   D key1 key2
# # 0  C0  D0   K0   K0
# # 1  C1  D1   K1   K0
# # 2  C2  D2   K1   K0
# # 3  C3  D3   K2   K0
#
# #依据key1与key2 columns进行合并,并打印出四种结果['left', 'right', 'outer', 'inner']
# res = pd.merge(left, right, on=['key1', 'key2'], how='inner')
# print(res)
# #    A   B key1 key2   C   D
# # 0  A0  B0   K0   K0  C0  D0
# # 1  A2  B2   K1   K0  C1  D1
# # 2  A2  B2   K1   K0  C2  D2
#
# res = pd.merge(left, right, on=['key1', 'key2'], how='outer')
# print(res)
# #     A    B key1 key2    C    D
# # 0   A0   B0   K0   K0   C0   D0
# # 1   A1   B1   K0   K1  NaN  NaN
# # 2   A2   B2   K1   K0   C1   D1
# # 3   A2   B2   K1   K0   C2   D2
# # 4   A3   B3   K2   K1  NaN  NaN
# # 5  NaN  NaN   K2   K0   C3   D3
#
# res = pd.merge(left, right, on=['key1', 'key2'], how='left')
# print(res)
# #    A   B key1 key2    C    D
# # 0  A0  B0   K0   K0   C0   D0
# # 1  A1  B1   K0   K1  NaN  NaN
# # 2  A2  B2   K1   K0   C1   D1
# # 3  A2  B2   K1   K0   C2   D2
# # 4  A3  B3   K2   K1  NaN  NaN
#
# res = pd.merge(left, right, on=['key1', 'key2'], how='right')
# print(res)
# #     A    B key1 key2   C   D
# # 0   A0   B0   K0   K0  C0  D0
# # 1   A2   B2   K1   K0  C1  D1
# # 2   A2   B2   K1   K0  C2  D2
# # 3  NaN  NaN   K2   K0  C3  D3
# 

# 
# #定义资料集并打印出
# df1 = pd.DataFrame({'col1':[0,1], 'col_left':['a','b']})
# df2 = pd.DataFrame({'col1':[1,2,2],'col_right':[2,2,2]})
#
# print(df1)
# #   col1 col_left
# # 0     0        a
# # 1     1        b
#
# print(df2)
# #   col1  col_right
# # 0     1          2
# # 1     2          2
# # 2     2          2
#
# # 依据col1进行合并,并启用indicator=True,最后打印出
# res = pd.merge(df1, df2, on='col1', how='outer', indicator=True)
# print(res)
# #   col1 col_left  col_right      _merge
# # 0   0.0        a        NaN   left_only
# # 1   1.0        b        2.0        both
# # 2   2.0      NaN        2.0  right_only
# # 3   2.0      NaN        2.0  right_only
#
# # 自定indicator column的名称,并打印出
# res = pd.merge(df1, df2, on='col1', how='outer', indicator='indicator_column')
# print(res)
# #   col1 col_left  col_right indicator_column
# # 0   0.0        a        NaN        left_only
# # 1   1.0        b        2.0             both
# # 2   2.0      NaN        2.0       right_only
# # 3   2.0      NaN        2.0       right_only
# 

# 
# #定义资料集并打印出
# left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
#                      'B': ['B0', 'B1', 'B2']},
#                      index=['K0', 'K1', 'K2'])
# right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
#                       'D': ['D0', 'D2', 'D3']},
#                      index=['K0', 'K2', 'K3'])
#
# print(left)
# #     A   B
# # K0  A0  B0
# # K1  A1  B1
# # K2  A2  B2
#
# print(right)
# #     C   D
# # K0  C0  D0
# # K2  C2  D2
# # K3  C3  D3
#
# #依据左右资料集的index进行合并,how='outer',并打印出
# res = pd.merge(left, right, left_index=True, right_index=True, how='outer')
# print(res)
# #      A    B    C    D
# # K0   A0   B0   C0   D0
# # K1   A1   B1  NaN  NaN
# # K2   A2   B2   C2   D2
# # K3  NaN  NaN   C3   D3
#
# #依据左右资料集的index进行合并,how='inner',并打印出
# res = pd.merge(left, right, left_index=True, right_index=True, how='inner')
# print(res)
# #     A   B   C   D
# # K0  A0  B0  C0  D0
# # K2  A2  B2  C2  D2
# 

# 
# #定义资料集
# boys = pd.DataFrame({'k': ['K0', 'K1', 'K2'], 'age': [1, 2, 3]})
# girls = pd.DataFrame({'k': ['K0', 'K0', 'K3'], 'age': [4, 5, 6]})
#
# #使用suffixes解决overlapping的问题
# res = pd.merge(boys, girls, on='k', suffixes=['_boy', '_girl'], how='inner')
# print(res)
# #    age_boy   k  age_girl
# # 0        1  K0         4
# # 1        1  K0         5
# 
# 

# 
# import pandas as pd
# import numpy as np
# import matplotlib.pyplot as plt
#
# # plot data
#
# # Series    # 线性
# # data = pd.Series(np.random.randn(1000),index=np.arange(1000))
# # data = data.cumsum()        # 累加
# # data.plot()
# # plt.show()
#
# # DataFrame # 数据点
# data = pd.DataFrame(np.random.randn(1000,4),index=np.arange(1000),columns=list('ABCD'))      # randn(1000,4)4个属性
# data = data.cumsum()
# # data.plot()     # 有很多参数可以设置
# # plot methods:
# # 'bar','hist','box','kde','area','scatter','hexbin','pie'
# ax = data.plot.scatter(x='A' ,y='B',color='DarkBlue',label='Class 1')
# data.plot.scatter(x='A',y='C',color='DarkGreen',label='Class 2',ax=ax)
# plt.show()
# 


 

你可能感兴趣的:(Python自学)