2018年度计算机视觉GtiHub top开源项目!

↑ 点击上方【计算机视觉联盟】关注我们

 

 

得益于计算成本的下降和顶级研究者们所带来的突破的激增(一些事件显示这两者可能是互相关联的),现在越来越多人可以使用深度学习进行研究了。而在深度学习这一领域,计算机视觉项目是最普遍——在这一章节中所提到的大部分开源项目都包含了一种计算机视觉技术或另一种计算机视觉技术。

现在,计算机视觉可以说是深度学习最热门的领域,并且在可见的未来依旧会这么热门。无论是目标检测,还是姿态估计,几乎所有的计算机视觉任务都有相对应的开源项目。现在是了解这些进展的最佳时期—不久后,你或许就可以获得大量的工作机会。

Facebook 的 Detectron 

开源地址:https://github.com/facebookresearch/Detectron

2018年度计算机视觉GtiHub top开源项目!_第1张图片

在 2018 年初被发布时,Detectron 就曾掀起千层浪。它由 Facebook 人工智能研究院(FAIR)开发,实现了最先进的目标检测框架。Detectron 采用(惊喜,惊喜!)Python 语言编写代码,已经帮助实现了多个项目,包括 DensePose(之后我们也会在文中提到)。

这个开源项目包括了代码以及 70+个预训练模型。与这么好的机会失之交臂,就问你同不同意?

英伟达的 vid2vid 技术

开源地址:https://github.com/NVIDIA/vid2vid

2018年度计算机视觉GtiHub top开源项目!_第2张图片

图像的目标检测现在做得很不错,那在视频中进行目标检测呢?不仅如此,我们能否能延展这一概念以及将某个视频的样式转换为另一种呢?是的,我们可以!这是一个非常酷的概念并且英伟达已经非常慷慨地发布了 PyTorch 实现,让大家尽情尝试。

这个开源项目包括介绍这一技术的视频、完整的研究论文以及代码。英伟达的示例中,应用了可公开注册下载的 Cityscapes dataset(下载地址:https://www.cityscapes-dataset.com/)。这是我自 2018 年以来个人最喜欢的开源项目。

用 18 秒在 ImageNet 数据集上训练出一个模型

开源地址:https://github.com/diux-dev/imagenet18

2018年度计算机视觉GtiHub top开源项目!_第3张图片

用 18 秒时间训练一个深度学习模型?与此同时还不使用高端的计算资源?相信我,现在可以实现了。Fast.ai 公司的 Jeremy Howard 和他的学生团队在热门的 ImageNet 数据集上创建了一个模型,表现甚至超过了 Google 的方法。

我建议你至少过一下这个开源项目,了解一下这些研究者是怎样构建代码的。并非每个人都拥有多个 GPU(有的人甚至一个也没有),因此对于「小虾米」来说,这个开源项目意义重大。

目标检测论文的完整集

开源地址:https://github.com/hoya012/deep_learning_object_detection

2018年度计算机视觉GtiHub top开源项目!_第4张图片

这是另一个研究论文集开源项目,它往往能帮助你了解所选择的研究课题在多年时间跨度里发生了怎样的演变,同时这个一站式历史记录正好可以帮助你了解目标检测在多年时间里经历的变化。它完整地收集了 2014 年至今的论文,甚至也尽可能地收集了每篇论文对应的代码。

上图表明了目标检测框架在过去五年时间里经历了怎样的演变和转变。很神奇,不是吗?图中甚至包括了 2019 年的工作,所以你有的忙了。

Facebook 的 DensePose

开源地址:https://github.com/facebookresearch/DensePose

 

让我们将注意力转向姿态检测领域。我在今年了解到这一概念本身,并且从此以后深为着迷。上面的图像抓住了这个开源项目的精华——户外场景下的密集人体姿势评估。

该开源项目包含了训练和评估 DensePose-RCNN 模型的代码,以及可用于可视化 DensePose COCO 数据集的笔记。这是一个开启姿态评估学习的好地方。

Everybody Dance Now—姿态评估

开源地址:https://github.com/nyoki-mtl/pytorch-EverybodyDanceNow

2018年度计算机视觉GtiHub top开源项目!_第5张图片

上图(截取自视频)。这项技术将不同视频中人体目标间的动作进行转移。我提到的这个视频也可以在开源项目中看到——它的效果超越你的想象!

这个开源项目进一步包含了这一方法的 PyTorch 实现。这一方法能够获取和复制的复杂细节的数量是惊人的。

640?wx_fmt=gif

声明:本文来源于网络

如有侵权,联系删除

热文荐读

 

2018年12月精选文章目录一览

亲身经历2019年校招8个大厂心得体会,纯干货分享(大疆、百度...)

重磅!图森王乃岩团队最新工作—TridentNet:处理目标检测中尺度变化新思路
GANs最新综述论文: 生成式对抗网络及其变种如何有用【附pdf下载】
算法岗百里挑一热爆了,全球AI大厂薪酬大起底
史上最全!计算机科学领域顶会最佳论文大合集:微软研究院最多,清华排24MIT的周博磊博士如何解释深度学习模型(附PPT)
【资源下载】512页IBM沃森研究员Charu最新2018著作《神经网络与深度学习》(附下载链接)
人工智能相关领域的国际顶尖会议介绍

2018年度计算机视觉GtiHub top开源项目!_第6张图片

640

你可能感兴趣的:(2018年度计算机视觉GtiHub top开源项目!)