Spark优化(六):使用高性能的算子

除了shuffle相关的算子有优化原则之外,其它的算子也都有着相应的优化原则:

 

  • 使用reduceByKey/aggregateByKey替代groupByKey。

    详情见“Spark优化(五):使用map-side预聚合的shuffle操作”。

  • 使用mapPartitions替代普通map。

    mapPartitions类的算子,一次函数调用会处理一个partition所有的数据,而不是一次函数调用处理一条,性能相对来说会高一些。但是有的时候,使用mapPartitions会出现OOM(内存溢出)的问题。因为单次函数调用就要处理掉一个partition所有的数据,如果内存不够,垃圾回收时是无法回收掉太多对象的,很可能出现OOM异常。所以使用这类操作时要慎重!

  • 使用foreachPartitions替代foreach。

    原理类似于“使用mapPartitions替代map”,也是一次函数调用处理一个partition的所有数据,而不是一次函数调用处理一条数据。在实践中发现,foreachPartitions类的算子,对性能的提升还是很有帮助的。比如在foreach函数中,将RDD中所有数据写MySQL,那么如果是普通的foreach算子,就会一条数据一条数据地写,每次函数调用可能就会创建一个数据库连接,此时就势必会频繁地创建和销毁数据库连接,性能是非常低下;但是如果用foreachPartitions算子一次性处理一个partition的数据,那么对于每个partition,只要创建一个数据库连接即可,然后执行批量插入操作,此时性能是比较高的。实践中发现,对于1万条左右的数据量写MySQL,性能可以提升30%以上。

  • 使用filter之后进行coalesce操作。

    通常对一个RDD执行filter算子过滤掉RDD中较多数据后(比如30%以上的数据),建议使用coalesce算子,手动减少RDD的partition数量,将RDD中的数据压缩到更少的partition中去。因为filter之后,RDD的每个partition中都会有很多数据被过滤掉,此时如果照常进行后续的计算,其实每个task处理的partition中的数据量并不是很多,有一点资源浪费,而且此时处理的task越多,可能速度反而越慢。因此用coalesce减少partition数量,将RDD中的数据压缩到更少的partition之后,只要使用更少的task即可处理完所有的partition。在某些场景下,对于性能的提升会有一定的帮助。

  • 使用repartitionAndSortWithinPartitions替代repartition与sort类操作。

    repartitionAndSortWithinPartitions是Spark官网推荐的一个算子。官方建议,如果是需要在repartition重分区之后还要进行排序,就可以直接使用repartitionAndSortWithinPartitions算子。因为该算子可以一边进行重分区的shuffle操作,一边进行排序。shuffle与sort两个操作同时进行,比先shuffle再sort来说,性能可能是要高的。

附:sortByKey、repartitionAndSortWithinPartitions 二者的使用

sortByKey:

源码:

def sortByKey(ascending: Boolean = true, numPartitions: Int = self.partitions.length) : RDD[(K, V)] = self.withScope{ val part = new RangePartitioner(numPartitions, self, ascending) new ShuffledRDD[K, V, V](self, part) .setKeyOrdering(if (ascending) ordering else ordering.reverse) } 

sortByKey() 将 RDD[(K, V)] 中的 records 按 key 排序,ascending = true 表示升序,false 表示降序。目前 sortByKey() 的数据依赖很简单,先使用 shuffle 将 records 聚集在一起(放到对应的 partition 里面),然后将 partition 内的所有 records 按 key 排序,最后得到的 MapPartitionsRDD 中的 records 就有序了。目前 sortByKey() 先使用 Array 来保存 partition 中所有的 records,再排序。

实例:

List data = Arrays.asList(1, 2, 4, 3, 5, 6, 7);
JavaRDD javaRDD = javaSparkContext.parallelize(data);
final Random random = new Random(100);
JavaPairRDD javaPairRDD = javaRDD.mapToPair(new PairFunction() {    
    @Override      
    public Tuple2 call(Integer integer) throws Exception {        
      return new Tuple2(integer,random.nextInt(10));    
  }
});

JavaPairRDD sortByKeyRDD = javaPairRDD.sortByKey();
System.out.println(sortByKeyRDD.collect());

repartitionAndSortWithinPartitions

源码分析:

def repartitionAndSortWithinPartitions(partitioner: Partitioner): RDD[(K, V)] = self.withScope { new ShuffledRDD[K, V, V](self, partitioner).setKeyOrdering(ordering) } 

从源码中可以看出,该方法依据partitioner对RDD进行分区,并且在每个结果分区中按key进行排序;通过对比sortByKey发现,这种方式比先分区,然后在每个分区中进行排序效率高,这是因为它可以将排序融入到shuffle阶段。

实例:

List data = Arrays.asList(1, 2, 4, 3, 5, 6, 7);
JavaRDD javaRDD = javaSparkContext.parallelize(data);
final Random random = new Random();JavaPairRDD javaPairRDD = javaRDD.mapToPair(new PairFunction() {    
    @Override    
    public Tuple2 call(Integer integer) throws Exception {        
      return new Tuple2(integer,random.nextInt(10));    
  }
});

JavaPairRDD RepartitionAndSortWithPartitionsRDD = javaPairRDD.repartitionAndSortWithinPartitions(new Partitioner() {    
    @Override    
    public int numPartitions() {   return 2;    }    
    @Override    
    public int getPartition(Object key) { return key.toString().hashCode() % numPartitions();    
  }
});
System.out.println(RepartitionAndSortWithPartitionsRDD.collect());

 

你可能感兴趣的:(RDD,Spark)