Python文本分类【NB、LR、SVM、CNN、RNN、TF-IDF、Word2Vec、FastText】

文章目录

  • 评估结果
    • 1、贝叶斯
    • 2、贝叶斯+TF-IDF
    • 3、逻辑回归+词向量(FastText)
    • 4、神经网络(CNN或RNN)
    • 5、神经网络+词向量(FastText)
  • 附录
    • 模型评估模块
    • 其它

评估结果

模型 时间 空间 精度
贝叶斯 1 0.83
逻辑回归 100 0.85
决策树 27 0.76
随机森林 16 0.78
-------------------- -------------------- -------------------- --------------------
贝叶斯+TfIdf 1 0.83
逻辑回归+TfIdf 13 0.85
决策树+TfIdf 30 0.76
随机森林+TfIdf 16 0.80
-------------------- -------------------- -------------------- --------------------
贝叶斯+FastText 1 0.77
逻辑回归+FastText 21 0.82
决策树+FastText 6 0.71
随机森林+FastText 23 0.80
SVM+FastText 22 0.83
-------------------- -------------------- -------------------- --------------------
贝叶斯+Word2Vec 1 0.78
逻辑回归+Word2Vec 20 0.82
决策树+Word2Vec 6 0.75
随机森林+Word2Vec 23 0.81
SVM+Word2Vec 23 0.82
-------------------- -------------------- -------------------- --------------------
贝叶斯+Word2Vec+TfIdf 1 0.78
逻辑回归+Word2Vec+TfIdf 60 0.83
决策树+Word2Vec+TfIdf 7 0.75
随机森林+Word2Vec+TfIdf 23 0.82
SVM+Word2Vec+TfIdf 51 0.85
-------------------- -------------------- -------------------- --------------------
CNN 317(5 epoch) 0.83
GRU 976(6 epoch) 0.78
-------------------- -------------------- -------------------- --------------------
CNN+FastText 181(4 epoch) 0.81
GRU+FastText 1218(8 epoch) 0.84
CNN+Word2Vec 134(3 epoch) 0.81
GRU+Word2Vec 1159(8 epoch) 0.84
CNN+Word2Vec+TfIdf 188(4 epoch) 0.80
GRU+Word2Vec+TfIdf 1696(9 epoch) 0.82

Python文本分类【NB、LR、SVM、CNN、RNN、TF-IDF、Word2Vec、FastText】_第1张图片

1、贝叶斯

from a_Data_preprocessing import load_xy, vocabs
from numpy import zeros
from b_metrics import metric, Timer
from sklearn.naive_bayes import MultinomialNB

"""数据加载、预处理"""
X_train, X_test, y_train, y_test = load_xy(1)

def ls_of_w2id(ls_of_wids):
    length = len(ls_of_wids)
    ls_of_wid = zeros((length, vocabs))
    for i in range(length):
        for wid in ls_of_wids[i]:
            ls_of_wid[i, wid - 1] += 1
    return ls_of_wid  # 句向量

X_train = ls_of_w2id(X_train)
X_test = ls_of_w2id(X_test)

"""建模"""
t = Timer()  # 计时器
clf = MultinomialNB()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)

"""预测结果"""
metric(y_test, y_pred)

2、贝叶斯+TF-IDF

from a_Data_preprocessing import load_xy, vocabs
from gensim.corpora import Dictionary
from gensim.models import TfidfModel
from numpy import zeros
from sklearn.naive_bayes import MultinomialNB
from b_metrics import metric, Timer

"""数据加载、预处理"""
X_train, X_test, y_train, y_test = load_xy()
dt = Dictionary(X_train)
X_train = [dt.doc2bow(x) for x in X_train]
X_test = [dt.doc2bow(x) for x in X_test]

tfidf = TfidfModel(X_train).idfs  # 字典:ID→TF-IDF向量

def ls_of_w2id(ls_of_wid):
    length = len(ls_of_wid)
    ls_of_idf = zeros((length, vocabs), dtype='float')
    for i in range(length):
        for (wid, cnt) in ls_of_wid[i]:
            ls_of_idf[i, wid] += cnt * tfidf[wid]
    return ls_of_idf  # TF-IDF句向量

X_train = ls_of_w2id(X_train)
X_test = ls_of_w2id(X_test)

"""建模"""
t = Timer()  # 计时器
clf = MultinomialNB()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)

"""预测结果"""
metric(y_test, y_pred)

3、逻辑回归+词向量(FastText)

X = [[str(y)] + x for x, y in zip(X_train, y_train)]
model = FastText(X, size=size, window=window)
w2i = {w: i for i, w in enumerate(model.wv.index2word)}
vectors = model.wv.vectors
w2v = lambda w: vectors[w2i[w]]
X_train_v = [[w2v(w) for w in x] for x in X_train]
X_test_v = [[w2v(w) for w in x if w in w2i] for x in X_test]
with open(PATH_XY_VEC, 'wb') as f:
    pickle.dump((X_train_v, X_test_v, y_train, y_test), f)
from a_Data_preprocessing import load_xy
from numpy import mean
from sklearn.linear_model import LogisticRegression
from b_metrics import metric, Timer

"""数据加载、预处理"""
X_train, X_test, y_train, y_test = load_xy(2)
X_train = [mean(x, axis=0) for x in X_train]
X_test = [mean(x, axis=0) for x in X_test]

"""建模"""
t = Timer()  # 计时器
clf = LogisticRegression()
clf.fit(X_train, y_train)

"""预测结果"""
y_pred = clf.predict(X_test)
metric(y_test, y_pred)

4、神经网络(CNN或RNN)

from tensorflow.python.keras.preprocessing.sequence import pad_sequences
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Embedding, Dense
from tensorflow.python.keras.callbacks import EarlyStopping
from tensorflow.python.keras.utils import to_categorical
from numpy import argmax
from a_Data_preprocessing import load_xy, vocabs
from b_metrics import metric, Timer

"""配置"""
maxlen = 200  # 序列长度
input_dim = vocabs + 1
output_dim = 100  # 词向量维度
batch_size = 256
epochs = 99
verbose = 2
patience = 1  # 没有进步的训练轮数
callbacks = [EarlyStopping('val_acc', patience=patience)]
validation_split = .05

"""数据读取与处理"""
X_train, X_test, y_train, y_test = load_xy(1)
X_train = pad_sequences(X_train, maxlen)
X_test = pad_sequences(X_test, maxlen)
y_train = to_categorical(y_train, 9)
y_test = to_categorical(y_test, 9)

"""建模"""
from tensorflow.python.keras.layers import Conv1D, MaxPool1D, GlobalMaxPool1D
filters = 50  # 卷积滤波器数量
kernel_size = 10  # 卷积层滤波器大小
model = Sequential(name='CNN')
model.add(Embedding(input_dim, output_dim, input_length=maxlen, input_shape=(maxlen,)))
model.add(Conv1D(filters, kernel_size * 2, padding='same', activation='relu'))
model.add(MaxPool1D(pool_size=2))  # strides默认等于pool_size
model.add(Conv1D(filters * 2, kernel_size, padding='same', activation='relu'))
model.add(GlobalMaxPool1D())  # 对于时序数据的全局最大池化
model.add(Dense(9, activation='softmax'))
# from tensorflow.python.keras.layers import LSTM
# units = 100  # RNN神经元数量
# model = Sequential(name='RNN')
# model.add(Embedding(input_dim, output_dim, input_length=maxlen, input_shape=(maxlen,)))
# model.add(LSTM(units))  # 返回序列最尾结果
# model.add(Dense(9, activation='softmax'))
model.summary()

"""编译、训练"""
timer = Timer()
model.compile('adam', 'categorical_crossentropy', ['acc'])
model.fit(X_train, y_train, batch_size, epochs, verbose, callbacks, validation_split)

"""结果打印"""
y_pred = model.predict(X_test)
metric(argmax(y_test, axis=1), argmax(y_pred, axis=1))

5、神经网络+词向量(FastText)

from tensorflow.python.keras.preprocessing.sequence import pad_sequences
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.callbacks import EarlyStopping
from tensorflow.python.keras.utils import to_categorical
from numpy import argmax
from a_Data_preprocessing import load_xy, size
from b_metrics import metric, Timer

"""配置"""
maxlen = 200  # 序列长度
output_dim = size  # 词向量维度
batch_size = 512
epochs = 99
verbose = 2
patience = 1  # 没有进步的训练轮数
callbacks = [EarlyStopping('val_acc', patience=patience)]
validation_split = .05

"""数据读取与处理"""
X_train, X_test, y_train, y_test = load_xy(2)
X_train = pad_sequences(X_train, maxlen, dtype='float')
X_test = pad_sequences(X_test, maxlen, dtype='float')
y_train = to_categorical(y_train, 9)
y_test = to_categorical(y_test, 9)

"""建模"""
from tensorflow.python.keras.layers import Conv1D, MaxPool1D, GlobalMaxPool1D
filters = 50  # 卷积滤波器数量
kernel_size = 10  # 卷积层滤波器大小
model = Sequential(name='CNN')
model.add(Conv1D(filters, kernel_size * 2, padding='same', activation='relu', input_shape=(maxlen, size)))
model.add(MaxPool1D(pool_size=2))  # strides默认等于pool_size
model.add(Conv1D(filters * 2, kernel_size, padding='same', activation='relu'))
model.add(GlobalMaxPool1D())  # 对于时序数据的全局最大池化
model.add(Dense(9, activation='softmax'))
# from tensorflow.python.keras.layers import GRU
# units = 100
# model = Sequential(name='CNN')
# model.add(GRU(units, input_shape=(maxlen, size)))
# model.add(Dense(9, activation='softmax'))
model.summary()

"""编译、训练"""
timer = Timer()
model.compile('adam', 'categorical_crossentropy', ['acc'])
model.fit(X_train, y_train, batch_size, epochs, verbose, callbacks, validation_split)

"""结果"""
y_pred = model.predict(X_test)
metric(argmax(y_test, axis=1), argmax(y_pred, axis=1))

附录

模型评估模块

from time import time
from sklearn.metrics import classification_report, confusion_matrix
from a_Data_preprocessing import id2label
from seaborn import heatmap
from matplotlib import pyplot
from pandas import DataFrame

class Timer:
    def __init__(self):
        self.t = time()

    def __del__(self):
        print('\033[033m%.2f分钟\033[0m' % ((time() - self.t) / 60))

def metric(y_test, y_pred):
    i2l = id2label()
    y_test = [i2l[i] for i in y_test]
    y_pred = [i2l[i] for i in y_pred]
    report = classification_report(y_test, y_pred)
    print(report)
    labels = [i2l[i] for i in range(9)]
    matrix = confusion_matrix(y_test, y_pred)
    matrix = DataFrame(matrix, labels, labels)
    heatmap(matrix, center=400, fmt='d', annot=True)
    pyplot.show()

其它

首发日期
2019年5月9日
语料地址
https://github.com/AryeYellow/PyProjects/tree/master/tf2/新闻分类
TensorFlow版本
2.0 Preview

你可能感兴趣的:(自然语言处理)