Kolakoski序列

原文链接: https://www.baidu.com/link?url=FIxrzS2JFCTwgrhQs-lMXPyVOGcpWt0RxuTbXeXTbLS6ZGLlBz3bc1doTAKOOd9r2hPmYe_fb2Hlba-ASMU1X_&wd=&eqid=aa2e995b001da0e1000000035d8b3133

Kolakoski 数列仅由 1 和 2 构成,其中头 100 个数是

1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1,
2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1,
1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2,
1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2,
2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, …
如果我们把连续的相同数看作一组的话,整个数列的定义就只有两句话: a(1) = 1 , a(n) 表示第 n 组数的长度。例如,a(6) = 2,就表明第 6 组数(从第 8 个数算起)的长度就是 2。注意,有了这几个条件,整个序列就已经唯一地确定了!a(1) = 1 就表明第一组数只有一个数,因此下一个数必须要换成 2 ,因此 a(2) = 2 ;而 a(2) = 2 又说明这个 2 必须要连着出现两个,因此 a(3) = 2;而 a(3) = 2 就表明数列接下来要有两个 1 ,等等。也就是说,生成这个数列的“参数”就是这个数列本身。更酷的说法则是,这个数列是分形的:如果把每一组数用它的长度来替换,就会得到这个数列本身。另外一个可能有些出人意料的事实是:Kolakoski 数列在 OEIS 中的序号非常靠前—— A000002。

关于 Kolakoski 数列,我们知道些什么?很少。我们知道,这个数列可以用递归式 a(a(1) + a(2) + … + a(k)) = (3 + (-1)k)/2 来表达。我们目前已经知道,去掉数列最前面的 1,剩下的部分可以从 22 开始,由替换规则 22→2211,21→221,12→211,11→21 迭代产生。

你可能感兴趣的:(算法)