NMS 非极大值抑制 Python

 

#coding:utf-8  
import numpy as np  
#nms 非极大值抑制
#输入为bbox数据,包含[ymin,xmin,ymax,xmax];每个bbox的评分;每个bbox的标签,如果没有标签就注释掉
def py_cpu_nms(dets,socres,label, thresh=0.4):  
    x1 = dets[:, 0]  
    y1 = dets[:, 1]  
    x2 = dets[:, 2]  
    y2 = dets[:, 3]  
    scores = socres  #bbox打分
  
    areas = (x2 - x1 + 1) * (y2 - y1 + 1)  
#打分从大到小排列,取index  
    order = scores.argsort()[::-1]  
#keep为最后保留的边框  
    keep = []  
    while order.size > 0:  
#order[0]是当前分数最大的窗口,肯定保留  
        i = order[0]  
        keep.append(i)  
#计算窗口i与其他所有窗口的交叠部分的面积
        xx1 = np.maximum(x1[i], x1[order[1:]])  
        yy1 = np.maximum(y1[i], y1[order[1:]])  
        xx2 = np.minimum(x2[i], x2[order[1:]])  
        yy2 = np.minimum(y2[i], y2[order[1:]])  
        
#         print xx1.shape
        
        w = np.maximum(0.0, xx2 - xx1 + 1)  
        h = np.maximum(0.0, yy2 - yy1 + 1)  
        inter = w * h  
#交/并得到iou值 
        ovr = inter / (areas[i] + areas[order[1:]] - inter)  
#         print ovr
        inds=[]
#         print label[0] 
        b=order[0]
#inds为所有与窗口i的iou值小于threshold值的窗口的index,其他窗口此次都被窗口i吸收
#只有在标签一致的情况下才会判断是否被窗口吸收,如果没有标签的话就使用下面注释的代码
        for j in range(len(order)-1):
            a=order[j+1]
            if label[a]==label[b]:
                if ovr[j]<=thresh:
                    inds.append(j+1) 
            else:
                inds.append(j+1)
#order里面只保留与窗口i交叠面积小于threshold的那些窗口,由于ovr长度比order长度少1(不包含i),所以inds+1对应到保留的窗口
        order = order[inds]  
    
#           inds = np.where(ovr <= thresh)[0]  
#           order = order[inds + 1]  


    return keep

 

 

 

 

你可能感兴趣的:(目标检测)