https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select
[WITH CommonTableExpression (, CommonTableExpression)*] (Note: Only available starting with Hive 0.13.0) |
1)全表查询
hive (default)> select * from emp;
2)选择特定列查询
hive (default)> select empno, ename from emp;
注意:
(1)SQL 语言大小写不敏感。
(2)SQL 可以写在一行或者多行
(3)关键词不能被缩写也不能分行
(4)各子句一般要分行写。
(5)使用缩进提高语句的可读性。
1)重命名一个列。
2)便于计算。
3)紧跟列名, 也可以在列名和别名之间加入关键字‘AS’。
4)案例实操
查询名称和部门
hive (default)> select ename AS name, deptno dn from emp;
运算符 |
描述 |
A+B |
A和B相加 |
A-B |
A减去B |
A*B |
A 和B相乘 |
A/B |
A除以B |
A%B |
A对B取余 |
示例语句
hive (default)> select sal +1 from emp;
1)求总行数(count)
hive (default)> select count(*) cnt from emp;
2)求工资的最大值(max)
hive (default)> select max(sal) max_sal from emp;
3)求工资的最小值(min)
hive (default)> select min(sal) min_sal from emp;
4)求工资的总和(sum)
hive (default)> select sum(sal) sum_sal from emp;
5)求工资的平均值(avg)
hive (default)> select avg(sal) avg_sal from emp;
典型的查询会返回多行数据。 LIMIT 子句用于限制返回的行数。
hive (default)> select * from emp limit 5;
1)使用 WHERE 子句,将不满足条件的行过滤掉。
2)WHERE 子句紧随 FROM 子句。
3)示例语句
查询出薪水大于 1000 的所有员工
hive (default)> select * from emp where sal >1000;
1)下面表中描述了谓词操作符,这些操作符同样可以用于JOIN…ON和HAVING语句中。
操作符 |
支持的数据类型 |
描述 |
A=B |
基本数据类型 |
如果A等于B则返回TRUE,反之返回FALSE |
A<=>B |
基本数据类型 |
如果A和B都为 NULL,则返回TRUE,其他的和等号(=)操作符的结果一致,如果任一为NULL则结果为NULL |
A<>B, A!=B |
基本数据类型 |
A或B为NULL则返回NULL;如果A不等于B,则返回TRUE,反之返回FALSE |
A |
基本数据类型 |
|
A<=B |
基本数据类型 |
A或者B为NULL,则返回NULL;如果A小于等于B,则返回TRUE,反之返回FALSE |
A>B |
基本数据类型 |
A或者B为NULL,则返回NULL;如果A大于B,则返回TRUE,反之返回FALSE |
A>=B |
基本数据类型 |
A或者B为NULL,则返回NULL;如果A大于等于B,则返回TRUE,反之返回FALSE |
A [NOT] BETWEEN B AND C |
基本数据类型 |
如果A,B或者C任一为NULL,则结果NULL。如果A的值大于等于B而且小于或等于C,则结果为TRUE,反之为FALSE。如果使用NOT关键字则可达到相反的效果。 |
A IS NULL |
所有数据类型 |
如果A等于NULL,则返回TRUE,反之返回FALSE |
A IS NOT NULL |
所有数据类型 |
如果A不等于NULL,则返回TRUE,反之返回FALSE IN(数值1, 数值2) 所有数据类型使用IN运算显示列表中的值 |
IN (数值1, 数值2) |
所有数据类型 |
使用IN运算显示列表中的值 |
A [NOT] LIKE B |
STRING类型 |
B是一个SQL下的简单正则表达式,如果A与其匹配的话,则返回TRUE;反之返回FALSE。B的表达式说明如下:‘x%’表示A必须以字母‘x’开头,‘%x’表示A必须以字母’x’结尾,而‘%x%’表示A包含有字母’x’,可以位于开头,结尾或者字符串中间。如果使用NO关键字则可达到相反的效果。 |
A RLIKE B, A REGEXP B |
STRING类型 |
B是一个正则表达式,如果A与其匹配,则返回TRUE;反之返回FALSE。匹配使用的是JDK中的正则表达式接口实现的,因为正则也依据其中的规则。例如:正则表达式必须和整个字符串A相匹配,而不是只需与其字符串匹配。 |
2)案例实操
(1)查询出薪水等于 5000 的所有员工
hive (default)> select * from emp where sal =5000;
(2)查询工资在 500 到 1000 的员工信息
hive (default)> select * from emp where sal between 500 and 1000;
(3)查询 comm 为空的所有员工信息
hive (default)> select * from emp where comm is null;
(4)查询工资是1500和5000的员工信息
hive (default)> select * from emp where sal IN (1500, 5000);
1)使用LIKE运算选择类似的值
2)选择条件可以包含字符或数字:
% 代表零个或多个字符(任意个字符)。
_ 代表一个字符。
3)RLIKE 子句是 Hive 中这个功能的一个扩展,其可以通过Java的正则表达式这个更强大的语言来指定匹配条件。
4)案例实操
(1)查找以2开头薪水的员工信息
hive (default)> select * from emp where sal LIKE '2%';
(2)查找第二个数值为2的薪水的员工信息
hive (default)> select * from emp where sal LIKE '_2%';
(3)查找薪水中含有2的员工信息
hive (default)> select * from emp where sal RLIKE '[2]';
操作符 |
含义 |
AND |
逻辑并 |
OR |
逻辑或 |
NOT |
逻辑非 |
案例实操
(1)查询薪水大于 1000,部门是 30
hive (default)> select * from emp where sal>1000 and deptno=30;
(2)查询薪水大于 1000,或者部门是 30
hive (default)> select * from emp where sal>1000 or deptno=30;
(3)查询除了 20 部门和 30 部门以外的员工信息
hive (default)> select * from emp where deptno not IN(30, 20);
GROUP BY 语句通常会和聚合函数一起使用,按照一个或者多个列队结果进行分组,然后对每个组执行聚合操作。
案例实操:
(1)计算 emp 表每个部门的平均工资
hive (default)> select t.deptno, avg(t.sal) avg_sal from emp t group by t.deptno;
(2)计算 emp 每个部门中每个岗位的最高薪水
hive (default)> select t.deptno, t.job, max(t.sal) max_sal from emp t group by t.deptno,t.job;
1) having与where不同点
(1) where 针对表中的列发挥作用,查询数据; having 针对查询结果中的列发挥作用,筛选数据。
(2) where 后面不能写分组函数,而 having 后面可以使用分组函数。
(3) having 只用于 group by 分组统计语句。
2)案例实操:
(1)求每个部门的平均薪水大于 2000 的部门
求每个部门的平均工资
hive (default)> select deptno, avg(sal) from emp group by deptno;
求每个部门的平均薪水大于 2000 的部门
hive (default)> select deptno, avg(sal) avg_sal from emp group by deptno having avg_sal >2000;
Hive 支持通常的 SQL JOIN 语句,但是只支持等值连接,不支持非等值连接。
案例实操
(1)根据员工表和部门表中的部门编号相等,查询员工编号、员工名称和部门编号;
hive (default)> select e.empno, e.ename, d.deptno, d.dname from emp e join dept d on e.deptno = d.deptno;
1)好处
(1)使用别名可以简化查询。
(2)使用表名前缀可以提高执行效率。
2)案例实操
合并员工表和部门表
hive (default)> select e.empno, e.ename, d.deptno from emp e join dept d on e.deptno = d.deptno;
内连接:只有进行连接的两个表中都存在与连接条件相匹配的数据才会被保留下来。
hive (default)> select e.empno, e.ename, d.deptno from emp e join dept d on e.deptno = d.deptno;
左外连接: JOIN 操作符左边表中符合 WHERE 子句的所有记录将会被返回。
hive (default)> select e.empno, e.ename, d.deptno from emp e left join dept d on e.deptno = d.deptno;
右外连接: JOIN 操作符右边表中符合 WHERE 子句的所有记录将会被返回。
hive (default)> select e.empno, e.ename, d.deptno from emp e right join dept d on e.deptno = d.deptno;
满外连接:将会返回所有表中符合 WHERE 语句条件的所有记录。如果任一表的指定字段没有符合条件的值的话,那么就使用 NULL 值替代。
hive (default)> select e.empno, e.ename, d.deptno from emp e full join dept d on e.deptno = d.deptno;
注意:连接 n 个表,至少需要 n-1 个连接条件。例如:连接三个表,至少需要两个连接条件。
0)数据准备
1)创建位置表
create table if not exists default.location( loc int, loc_name string ) row format delimited fields terminated by '\t'; |
2)导入数据
hive (default)> load data local inpath '/opt/module/datas/location.txt' into table
default.location;
3)多表连接查询
hive (default)>SELECT e.ename, d.deptno, l. loc_name
FROM emp e
JOIN dept d
ON d.deptno = e.deptno
JOIN location l
ON d.loc = l.loc;
大多数情况下, Hive 会对每对 JOIN 连接对象启动一个 MapReduce 任务。本例中会首先启动一个 MapReduce job 对表 e 和表 d 进行连接操作,然后会再启动一个 MapReduce job将第一个 MapReduce job 的输出和表 l;进行连接操作。
注意:为什么不是表 d 和表 l 先进行连接操作呢?这是因为 Hive 总是按照从左到右的顺序执行的。
1)笛卡尔集会在下面条件下产生:
(1)省略连接条件
(2)连接条件无效
(3)所有表中的所有行互相连接
2)案例实操
hive (default)> select empno, deptno from emp, dept;
FAILED: SemanticException Column deptno Found in more than One Tables/Subqueries
在连接语句中,on子句中不允许使用or连接词;如下示例就是一个错误示例
hive (default)> select e.empno, e.ename, d.deptno from emp e join dept d on e.deptno=d.deptno or e.ename=d.ename; 错误的
Order By:全局排序,一个 MapReduce
1)使用 ORDER BY 子句排序
ASC(ascend): 升序(默认)
DESC(descend): 降序
2) ORDER BY 子句在 SELECT 语句的结尾。
3)案例实操
(1)查询员工信息按工资升序排列
hive (default)> select * from emp order by sal;
(2)查询员工信息按工资降序排列
hive (default)> select * from emp order by sal desc;
按照员工薪水的 2 倍排序
hive (default)> select ename, sal*2 twosal from emp order by twosal;
按照部门和工资升序排序
hive (default)> select ename, deptno, sal from emp order by deptno, sal ;
Sort By:每个 MapReduce 内部进行排序,对全局结果集来说不是排序。
1)设置 reduce 个数
hive (default)> set mapreduce.job.reduces=3;
2)查看设置 reduce 个数
hive (default)> set mapreduce.job.reduces;
3)根据部门编号降序查看员工信息
hive (default)> select * from emp sort by empno desc;
4)将查询结果导入到文件中(按照部门编号降序排序)
hive (default)> insert overwrite local directory '/opt/module/datas/sortby-result' select * from emp sort by deptno desc;
Distribute By:类似 MR 中 partition,进行分区,结合 sort by 使用。
注意:Hive 要求 DISTRIBUTE BY 语句要写在 SORT BY 语句之前。
对于 distribute by 进行测试,一定要分配多reduce进行处理,否则无法看到distribute by的效果。
案例实操:
(1)先按照部门编号分区,再按照员工编号降序排序。
hive (default)> set mapreduce.job.reduces=3;
hive (default)> insert overwrite local directory '/opt/module/datas/distribute-result' select * from emp distribute by deptno sort by empno desc;
当 distribute by 和 sorts by 字段相同时,可以使用 cluster by 方式。
cluster by 除了具有 distribute by 的功能外还兼具 sort by 的功能。但是排序只能是倒序排序,不能指定排序规则为 ASC 或者 DESC。
1)以下两种写法等价
select * from emp cluster by deptno;
select * from emp distribute by deptno sort by deptno;
注意:按照部门编号分区,不一定就是固定死的数值,可以是 20 号和 30 号部门分到一个分区里面去。
分区针对的是数据的存储路径;分桶针对的是数据文件。
分区提供一个隔离数据和优化查询的便利方式。不过,并非所有的数据集都可形成合理的分区,特别是之前所提到过的要确定合适的划分大小这个疑虑。
分桶是将数据集分解成更容易管理的若干部分的另一个技术。
1)先创建分桶表,通过直接导入数据文件的方式
(0)数据准备
(1)创建分桶表
create table stu_buck(id int, name string) clustered by(id) into 4 buckets row format delimited fields terminated by '\t'; |
(2)查看表结构
hive (default)> desc formatted stu_buck; Num Buckets: 4 |
(3)导入数据到分桶表中
hive (default)> load data local inpath '/opt/module/datas/student.txt' into table stu_buck; |
(4)查看创建的分桶表中是否分成 4 个桶发现并没有分成 4 个桶。是什么原因呢?
2)创建分桶表时,数据通过子查询的方式导入
(1)先建一个普通的 stu 表
create table stu(id int, name string) row format delimited fields terminated by '\t'; |
(2)向普通的 stu 表中导入数据
load data local inpath '/opt/module/datas/student.txt' into table stu; |
(3)清空 stu_buck 表中数据
truncate table stu_buck; select * from stu_buck; |
(4)导入数据到分桶表,通过子查询的方式
insert into table stu_buck select id, name from stu cluster by(id); |
(5)发现还是只有一个分桶
(6)需要设置一个属性
hive (default)>set hive.enforce.bucketing=true; hive (default)> set mapreduce.job.reduces=-1; hive (default)>insert into table stu_buck select id, name from stu cluster by(id); |
(7)查询分桶的数据
hive (default)> select * from stu_buck; OK stu_buck.id stu_buck.name 1001 testdata1 1005 testdata5 1009 testdata9 1012 testdata12 1016 testdata16 1002 testdata2 1006 testdata6 1013 testdata13 1003 testdata3 1007 testdata7 1010 testdata10 1014 testdata14 1004 testdata4 1008 testdata8 1011 testdata11 1015 testdata15 |
对于非常大的数据集,有时用户需要使用的是一个具有代表性的查询结果而不是全部结果。 Hive 可以通过对表进行抽样来满足这个需求。
查询表 stu_buck 中的数据。
hive (default)> select * from stu_buck tablesample(bucket 1 out of 4 on id); |
注:tablesample 是抽样语句,语法:TABLESAMPLE(BUCKET x OUT OF y) 。
y必须是table总bucket数的倍数或者因子。 hive根据y的大小,决定抽样的比例。例如,table总共分了4份,当y=2时,抽取(4/2=)2个bucket的数据,当y=8时,抽取(4/8=)1/2个bucket的数据。
x 表示从哪个bucket开始抽取。例如,table总bucket数为4,tablesample(bucket 4 out of 4),表示总共抽取(4/4=)1个 bucket 的数据,抽取第4个bucket的数据。
注意:x的值必须小于等于y的值,否则
FAILED: SemanticException [Error 10061]: Numerator should not be bigger than
denominator in sample clause for table stu_buck
Hive 提供了另外一种按照百分比进行抽样的方式,这种是基于行数的,按照输入路径下的数据块百分比进行的抽样。
hive (default)> select * from stu tablesample(0.1 percent) ; |
提示:这种抽样方式不一定适用于所有的文件格式。另外,这种抽样的最小抽样单元是一个 HDFS 数据块。因此,如果表的数据大小小于普通的块大小 128M 的话,那么将会返回所有行。