正则表达式(regular expression)是可以匹配文本片段的模式。最简单的正则表达式就是普通字符串,可以匹配其自身。比如,正则表达式 ‘hello’ 可以匹配字符串 ‘hello’。要注意的是,正则表达式并不是一个程序,而是用于处理字符串的一种模式,如果你想用它来处理字符串,就必须使用支持正则表达式的工具,比如 Linux 中的 awk, sed, grep,或者编程语言 Python, Java 等。
正则表达式有多种不同的风格,下表列出了适用于 Python语言的部分元字符以及说明:
python\.org #匹配 python.org 的正则表达式,用转义符改变.的意思
注:如果使用 python.org
来匹配,由于 .
可以匹配任意一个字符(换行符除外),因此,它也会匹配到类似 pythonmorg 的字符串,为了匹配点号,我们需要加 \
来转义。
\d{3}\-\d{8} #匹配010-85692930的正则表达式
注:\d
表示匹配数字,\d{3}
表示匹配 3 个数字,\-
表示匹配 -
。
^\w+$ #匹配由数字、26个英文字母或下划线组成的字符串的正则表达式
或
^[0-9a-zA-Z_]+$ #匹配由数字、26个英文字母或下划线组成的字符串的正则表达式
^(13[0-9]|15[0|1|2|3|5|6|7|8|9]|18[0-9])\d{8}$ #匹配 13、15、18 开头的手机号的正则表达式
^[0-9]+(.[0-9]{2})?$ # 匹配金额,精确到 2 位小数
在 Python 中,我们可以使用re 模块(内置模块)来使用正则表达式。re 模块提供了不少有用的函数,用以匹配字符串,比如:
re 模块的一般使用步骤如下:
最后使用 Match 对象提供的属性和方法获得信息,根据需要进行其他的操作
compile 函数用于编译正则表达式,生成一个 Pattern 对象,它的一般使用形式如下:
re.compile(pattern[, flag])
其中,pattern 是一个字符串形式的正则表达式,flag 是一个可选参数,表示匹配模式,比如忽略大小写,多行模式等。下面,让我们看看例子。
import re
pattern = re.compile(r'\d+') # 将正则表达式编译成 Pattern 对象
在上面,我们已将一个正则表达式编译成 Pattern 对象,接下来,我们就可以利用 pattern 的一系列方法对文本进行匹配查找了。Pattern 对象的一些常用方法主要有:
- match 方法
- search 方法
- findall 方法
- finditer 方法
- split 方法
- sub 方法
- subn 方法
match 方法用于查找字符串的头部(也可以指定起始位置),它是一次匹配,只要找到了一个匹配的结果就返回,而不是查找所有匹配的结果。它的一般使用形式如下:
match(string[, pos[, endpos]])
其中,string 是待匹配的字符串,pos 和 endpos 是可选参数,指定字符串的起始和终点位置,默认值分别是 0 和 len (字符串长度)。因此,当你不指定 pos 和 endpos 时,match 方法默认匹配字符串的头部。
当匹配成功时,返回一个 Match 对象,如果没有匹配上,则返回 None。看看例子。
>>> import re
>>> pattern = re.compile(r'\d+') # 用于匹配至少一个数字
>>> m = pattern.match('one12twothree34four') # 查找头部,没有匹配
>>> print(m)
None
>>> m = pattern.match('one12twothree34four', 2, 10) # 从'e'的位置开始匹配,没有匹配
>>> print(m)
None
>>> m = pattern.match('one12twothree34four', 3, 10) # 从'1'的位置开始匹配,正好匹配
>>> print(m) # 返回一个 Match 对象
<_sre.SRE_Match object at 0x10a42aac0>
>>> m.group(0) # 可省略 0
'12'
>>> m.start(0) # 可省略 0
3
>>> m.end(0) # 可省略 0
5
>>> m.span(0) # 可省略 0
(3, 5)
在上面,当匹配成功时返回一个 Match 对象,其中:
group([group1, …])
方法用于获得一个或多个分组匹配的字符串,当要获得整个匹配的子串时,可直接使用 group()
或 group(0)
;start([group])
方法用于获取分组匹配的子串在整个字符串中的起始位置(子串第一个字符的索引),参数默认值为 0;end([group])
方法用于获取分组匹配的子串在整个字符串中的结束位置(子串最后一个字符的索引+1),参数默认值为 0;span([group])
方法返回 (start(group), end(group))
。再看看一个例子:
>>> import re
>>> pattern = re.compile(r'([a-z]+) ([a-z]+)', re.I) # re.I 表示忽略大小写
>>> m = pattern.match('Hello World Wide Web')
>>> print m # 匹配成功,返回一个 Match 对象
<_sre.SRE_Match object at 0x10bea83e8>
>>> m.group(0) # 返回匹配成功的整个子串
'Hello World'
>>> m.span(0) # 返回匹配成功的整个子串的索引
(0, 11)
>>> m.group(1) # 返回第一个分组匹配成功的子串
'Hello'
>>> m.span(1) # 返回第一个分组匹配成功的子串的索引
(0, 5)
>>> m.group(2) # 返回第二个分组匹配成功的子串
'World'
>>> m.span(2) # 返回第二个分组匹配成功的子串
(6, 11)
>>> m.groups() # 等价于 (m.group(1), m.group(2), ...)
('Hello', 'World')
>>> m.group(3) # 不存在第三个分组
Traceback (most recent call last):
File "" , line 1, in
IndexError: no such group
search 方法用于查找字符串的任何位置,它也是一次匹配,只要找到了一个匹配的结果就返回,而不是查找所有匹配的结果,它的一般使用形式如下:
search(string[, pos[, endpos]])
其中,string 是待匹配的字符串,pos 和 endpos 是可选参数,指定字符串的起始和终点位置,默认值分别是 0 和 len (字符串长度)。当匹配成功时,返回一个 Match 对象,如果没有匹配上,则返回 None。看看例子:
>>> import re
>>> pattern = re.compile('\d+')
>>> m = pattern.search('one12twothree34four') # 这里如果使用 match 方法则不匹配
>>> m
<_sre.SRE_Match object at 0x10cc03ac0>
>>> m.group()
'12'
>>> m = pattern.search('one12twothree34four', 10, 30) # 指定字符串区间
>>> m
<_sre.SRE_Match object at 0x10cc03b28>
>>> m.group()
'34'
>>> m.span()
(13, 15)
再来看一个例子:
# -*- coding: utf-8 -*-
import re
# 将正则表达式编译成 Pattern 对象
pattern = re.compile(r'\d+')
# 使用 search() 查找匹配的子串,不存在匹配的子串时将返回 None
# 这里使用 match() 无法成功匹配
m = pattern.search('hello 123456 789')
if m:
# 使用 Match 获得分组信息
print 'matching string:',m.group()
print 'position:',m.span()
执行结果:
matching string: 123456
position: (6, 12)
上面的 match 和 search 方法都是一次匹配,只要找到了一个匹配的结果就返回。然而,在大多数时候,我们需要搜索整个字符串,获得所有匹配的结果。findall 方法的使用形式如下:
findall(string[, pos[, endpos]])
其中,string 是待匹配的字符串,pos 和 endpos 是可选参数,指定字符串的起始和终点位置,默认值分别是 0 和 len (字符串长度)。findall 以列表形式返回全部能匹配的子串,如果没有匹配,则返回一个空列表。看看例子:
import re
pattern = re.compile(r'\d+') # 查找数字
result1 = pattern.findall('hello 123456 789')
result2 = pattern.findall('one1two2three3four4', 0, 10)
print result1
print result2
执行结果:
['123456', '789']
['1', '2']
finditer 方法的行为跟 findall 的行为类似,也是搜索整个字符串,获得所有匹配的结果。但它返回一个顺序访问每一个匹配结果(Match 对象)的迭代器。看看例子:
# -*- coding: utf-8 -*-
import re
pattern = re.compile(r'\d+')
result_iter1 = pattern.finditer('hello 123456 789')
result_iter2 = pattern.finditer('one1two2three3four4', 0, 10)
print type(result_iter1)
print type(result_iter2)
print 'result1...'
for m1 in result_iter1: # m1 是 Match 对象
print 'matching string: {}, position: {}'.format(m1.group(), m1.span())
print 'result2...'
for m2 in result_iter2:
print 'matching string: {}, position: {}'.format(m2.group(), m2.span())
执行结果:
<type 'callable-iterator'>
<type 'callable-iterator'>
result1...
matching string: 123456, position: (6, 12)
matching string: 789, position: (13, 16)
result2...
matching string: 1, position: (3, 4)
matching string: 2, position: (7, 8)
split 方法按照能够匹配的子串将字符串分割后返回列表,它的使用形式如下:
split(string[, maxsplit])
其中,maxsplit 用于指定最大分割次数,不指定将全部分割。
看看例子:
import re
p = re.compile(r'[\s\,\;]+')
print p.split('a,b;; c d')
执行结果:
['a', 'b', 'c', 'd']
sub 方法用于替换。它的使用形式如下:
sub(repl, string[, count])
其中,repl 可以是字符串也可以是一个函数:
\id
的形式来引用分组,但不能使用编号 0;import re
p = re.compile(r'(\w+) (\w+)')
s = 'hello 123, hello 456'
def func(m):
return 'hi' + ' ' + m.group(2)
print p.sub(r'hello world', s) # 使用 'hello world' 替换 'hello 123' 和 'hello 456'
print p.sub(r'\2 \1', s) # 引用分组
print p.sub(func, s)
print p.sub(func, s, 1) # 最多替换一次
执行结果:
hello world, hello world
123 hello, 456 hello
hi 123, hi 456
hi 123, hello 456
subn 方法跟 sub 方法的行为类似,也用于替换。它的使用形式如下:
subn(repl, string[, count])
它返回一个元组:
(sub(repl, string[, count]), 替换次数)
元组有两个元素,第一个元素是使用 sub 方法的结果,第二个元素返回原字符串被替换的次数。看看例子:
import re
p = re.compile(r'(\w+) (\w+)')
s = 'hello 123, hello 456'
def func(m):
return 'hi' + ' ' + m.group(2)
print p.subn(r'hello world', s)
print p.subn(r'\2 \1', s)
print p.subn(func, s)
print p.subn(func, s, 1)
执行结果:
('hello world, hello world', 2)
('123 hello, 456 hello', 2)
('hi 123, hi 456', 2)
('hi 123, hello 456', 1)
事实上,使用 compile 函数生成的 Pattern 对象的一系列方法跟 re 模块的多数函数是对应的,但在使用上有细微差别。
match 函数的使用形式如下:
re.match(pattern, string[, flags]):
其中,pattern 是正则表达式的字符串形式,比如 \d+
, [a-z]+
。
而 Pattern 对象的 match 方法使用形式是:
match(string[, pos[, endpos]])
可以看到,match 函数不能指定字符串的区间,它只能搜索头部,看看例子:
import re
m1 = re.match(r'\d+', 'One12twothree34four')
if m1:
print 'matching string:',m1.group()
else:
print 'm1 is:',m1
m2 = re.match(r'\d+', '12twothree34four')
if m2:
print 'matching string:', m2.group()
else:
print 'm2 is:',m2
执行结果:
m1 is: None
matching string: 12
search 函数的使用形式如下:
re.search(pattern, string[, flags])
search 函数不能指定字符串的搜索区间,用法跟 Pattern 对象的 search 方法类似。
findall 函数的使用形式如下:
re.findall(pattern, string[, flags])
findall 函数不能指定字符串的搜索区间,用法跟 Pattern 对象的 findall 方法类似。
看看例子:
import re
print re.findall(r'\d+', 'hello 12345 789')
# 输出
['12345', '789']
finditer 函数的使用方法跟 Pattern 的 finditer 方法类似,形式如下:
re.finditer(pattern, string[, flags])
split 函数的使用形式如下:
re.split(pattern, string[, maxsplit])
sub 函数的使用形式如下:
re.sub(pattern, repl, string[, count])
subn 函数的使用形式如下:
re.subn(pattern, repl, string[, count])
注:
从上文可以看到,使用 re 模块有两种方式:
下面,我们用一个例子展示这两种方法。先看第 1 种用法:
import re
# 将正则表达式先编译成 Pattern 对象
pattern = re.compile(r'\d+')
print pattern.match('123, 123')
print pattern.search('234, 234')
print pattern.findall('345, 345')
再看第 2 种用法:
import re
print re.match(r'\d+', '123, 123')
print re.search(r'\d+', '234, 234')
print re.findall(r'\d+', '345, 345')
如果一个正则表达式需要用到多次(比如上面的 \d+
),在多种场合经常需要被用到,出于效率的考虑,我们应该预先编译该正则表达式,生成一个 Pattern 对象,再使用该对象的一系列方法对需要匹配的文件进行匹配;而如果直接使用 re.match, re.search 等函数,每次传入一个正则表达式,它都会被编译一次,效率就会大打折扣。因此,推荐使用第 1 种用法。
在某些情况下,我们想匹配文本中的汉字,有一点需要注意的是,中文的 unicode 编码范围 主要在 [\u4e00-\u9fa5]
,这里说主要是因为这个范围并不完整,比如没有包括全角(中文)标点,不过,在大部分情况下,应该是够用的。假设现在想把字符串 title = u'你好,hello,世界'
中的中文提取出来,可以这么做:
# -*- coding: utf-8 -*-
import re
title = u'你好,hello,世界'
pattern = re.compile(ur'[\u4e00-\u9fa5]+')
result = pattern.findall(title)
print result
注意到,我们在正则表达式前面加上了两个前缀 ur
,其中 r
表示使用原始字符串,u
表示是 unicode 字符串。
执行结果:
[u'\u4f60\u597d', u'\u4e16\u754c']
注:
在 Python 中,正则匹配默认是贪婪匹配,也就是匹配尽可能多的字符。
比如,我们想找出字符串中的所有 div
块:
import re
content = 'aatest1bbtest2cc'
pattern = re.compile(r'.*')
result = pattern.findall(content)
print result
执行结果:
['test1bbtest2']
由于正则匹配是贪婪匹配,也就是尽可能多的匹配,因此,在成功匹配到第一个
如果我们想非贪婪匹配,可以加一个 ?
,如下:
import re
content = 'aatest1bbtest2cc'
pattern = re.compile(r'.*?') # 加上 ?
result = pattern.findall(content)
print result
结果:
['test1', 'test2']