- 根据deepseek模型微调训练自动驾驶模型及数据集的思路
ywfwyht
自动驾驶深度学习人工智能自动驾驶人工智能机器学习
以下是使用DeepSeek模型微调训练自动驾驶模型的详细步骤和代码示例。本流程假设你已有自动驾驶领域的数据集(如驾驶指令、传感器数据等),并基于PyTorch框架实现。Step1:环境准备#安装依赖库pipinstalltorchtransformersdatasetsnumpypandasStep2:数据准备假设数据集格式为JSON,包含输入文本(传感器/场景描述)和输出控制指令://data/
- 本地DeepSeek模型GGUF文件转换为PyTorch格式
搏博
pytorch人工智能python机器学习windows深度学习
接前文,我们在本地Windows系统上,基于GGUF文件部署了DeepSeek模型(DeepSeek-R1-Distill-Qwen-1.5B.gguf版本),但是GGUF是已经量化的版本,我们除了对其进行微调之外,无法对其训练,那么还有没有其他办法对本地的GGUF部署的DeepSeek模型进行训练呢?今天我们就反其道而行之,将GGUF文件转换为PyTorch格式再训练。前提:已经部署好了Deep
- 字节跳动实习生和校招生内推
飞300
pythonjavascriptphp业界资讯算法
机器学习算法实习生-平台治理1、2026届硕士及以上学位在读,计算机等相关专业优先;2、有扎实的代码能力,熟悉深度学习/图神经网络/机器学习框架,如Pytorch、Tensorflow、DGL、Pyg、Sklearn等;3、熟悉机器学习/图学习/序列学习算法中的一项或者多项,如图建模、时序信号建模、节点/子图分类、社区挖掘、表征学习、自监督/半监督学习等,有一定深度和广度;4、熟悉相关算法在数据挖
- MNIST Examples for GGML - Fully connected network
Yongqiang Cheng
ggml-llama.cpp-whisper.cppGGMLMNISTExamplesFullyconnected
MNISTExamplesforGGML-Fullyconnectednetwork1.Build2.MNISTExamplesforGGML2.1.Obtainingthedata2.2.Fullyconnectednetwork2.2.1.TotrainafullyconnectedmodelinPyTorchandsaveitasaGGUFfile2.2.2.Toevaluatethemod
- Python调用C语言动态库(DLL)结构体/指针/变量的方法
ENOCH_Q
PYTHONpythonc语言开发语言
文章目录前言一、如何生成C语言动态库DLL第一步:安装编译工具第二步:设计C代码第三步:编译成C语言动态库DLL二、如何使用C语言动态库第一步:python/pytorch调入DLL接口第二步:Python调用DLL函数第三步:Python测试函数三、完整程序与测试结果总结前言在使用python等进行数据处理时,有时需要使用C语言生成的动态库进行数据处理,比如有些算法已经用C语言实现,或有些函数处
- 动手学深度学习V2.0(Pytorch)——25. 使用块的网络 VGG
吨吨不打野
动手学深度学习pytorch深度学习pytorch网络
文章目录P1讲解1.1基本介绍1.2总结P2代码实现2.1报错解决2.2windows下专用/共享GPU内存P3Q&AP4.其他4.1ImageNetClassificationLeaderboard4.2VGG其它讲解P1讲解1.1基本介绍视频地址:https://www.bilibili.com/video/BV1Ao4y117Pd教材文档:https://zh-v2.d2l.ai/chapt
- 【Python】解决PyTorch报错:PytorchStreamReader failed reading zip archive: failed finding central的解决方案
I'mAlex
pythonpytorch开发语言
在使用PyTorch时,遇到“PytorchStreamReaderfailedreadingziparchive:failedfindingcentral”错误通常是由于损坏的模型文件或不兼容的文件版本导致的。这种问题在加载模型或数据时比较常见。以下是一些排查和解决该问题的步骤。博主简介:现任阿里巴巴嵌入式技术专家,15年工作经验,深耕嵌入式+人工智能领域,精通嵌入式领域开发、技术管理、简历招聘
- 【python语言应用】最新全流程Python编程、机器学习与深度学习实践技术应用(帮助你快速了解和入门 Python)
赵钰老师
python机器学习深度学习python机器学习深度学习数据分析人工智能
近年来,人工智能领域的飞速发展极大地改变了各个行业的面貌。当前最新的技术动态,如大型语言模型和深度学习技术的发展,展示了深度学习和机器学习技术的强大潜力,成为推动创新和提升竞争力的关键。特别是PyTorch,凭借其灵活性和高效性,成为科研人员和工程师的首选工具。理解和掌握深度学习的基础知识,深入了解其与经典机器学习算法的区别与联系,并系统掌握包括迁移学习、循环神经网络(RNN)、长短时记忆网络(L
- Python深度学习代做目标检测NLP计算机视觉强化学习
matlabgoodboy
计算机视觉python深度学习
了解您的需求,您似乎在寻找关于Python深度学习领域的代做服务,特别是在目标检测、自然语言处理(NLP)、计算机视觉以及强化学习方面。以下是一些关于这些领域的概述以及寻找相关服务的建议。1.Python深度学习代做概述目标检测:目标检测是计算机视觉中的一个重要任务,旨在识别图像或视频中的特定对象,并确定它们的位置。Python中的深度学习框架(如TensorFlow、PyTorch)和计算机视觉
- PyTorch入门实战:从零搭建你的第一个神经网络
不打滑的西瓜皮
机器学习深度学习人工智能神经网络pythonpytorchpycharm
目录一、PyTorch简介:为什么选择它?二、环境搭建:5分钟快速安装三、核心概念:张量与自动求导1.张量(Tensor):深度学习的数据基石2.自动求导(Autograd):神经网络训练的核心四、实战:手写数字识别(MNIST)1.数据集加载与预处理2.构建卷积神经网络(CNN)3.训练与评估五、下一步学习建议一、PyTorch简介:为什么选择它?PyTorch是当前最热门的深度学习框架之一,由
- PyTorch Lightning LightningDataModule 介绍
qq_27390023
pytorch人工智能python
LightningDataModule是PyTorchLightning提供的数据模块,用于统一管理数据加载流程(包括数据准备、预处理、拆分、批量加载等)。它的核心作用是将数据处理逻辑与模型解耦,提高代码的可复用性和可读性。1.LightningDataModule的作用✅封装数据预处理:数据下载、清理、转换等步骤都可以在LightningDataModule中完成。✅统一数据加载流程:确保训练、
- 【笔记】使用 Pytorch 进行分布式训练
LittleNyima
人工智能深度学习pytorch分布式
本文原文以CCBY-NC-SA4.0许可协议发布于技术相关|使用Pytorch进行分布式训练,转载请注明出处。其实Pytorch分布式训练已经不算什么新技术了,之所以专门写一篇blog是因为今天训模型的时候出现了一个没见过的问题,在调试的时候发现自己平时都是用别人写好的分布式代码,没有深入研究过其中的实现细节,因此感觉有必要整理吸收一下。最简单的数据并行作为最简单的并行计算方式,使用nn.Data
- 实验随记2-Pytorch Lightning多机多卡训练
晓岚和雪
实验随记pytorch人工智能python深度学习分布式
本文章主要收录笔者在阅读时发现的一些比较优质的多机多卡训练教程~~,由于pytorchLightning多机多卡示例很少,因此需要等笔者最近做完实验验证后才能更新示例。不断完善中…~~及多机多卡训练细节。任务需求:实现多机多卡训练,模型可能继承torch.nn或者torch.lightning。示例实现5节点4GPU共计20卡训练。使用pytorch_lightning==1.9.4存在bug:启
- PyTorch Lightning多GPU分布式日志介绍
qq_27390023
pytorch人工智能python
分布式日志是指在分布式系统中,多个节点(如多台机器或多个GPU)协同工作时,对系统运行状态、错误信息、性能指标等进行记录的过程。在多GPU/分布式训练环境下,多个进程会同时运行,普通的print()或logging可能会在所有GPU上重复输出,导致日志混乱。PyTorchLightning提供了一些分布式日志控制工具,确保日志仅在rank0进程打印,防止重复输出。lightning_utiliti
- Pytorch学习之路(3)
AAAx1anyu
Pytorch学习之旅学习人工智能pytorch深度学习笔记
一.机器学习任务的整体流程1.数据预处理:数据格式统一、异常数据消除、必要数据转换,划分训练集、验证集、测试集2.选择模型3.设定损失函数、优化方法、对应的超参数4.用模型拟合训练集数据,在验证集/测试集上计算模型表现二.数据读入pytorch数据读入通过Dataset+DataLoader的方式完成,Dataset定义好数据的格式和数据变换形式,DataLoader用iterative的方式不断
- PyTorch 与 TensorFlow 的深度解析:全面比较两大深度学习框架,助你选择最适合的工具
BuluAI
深度学习pytorchtensorflow
在人工智能的浪潮中,深度学习框架成为了开发者们的得力助手。PyTorch和TensorFlow作为其中的佼佼者,各自拥有庞大的用户群体和强大的社区支持。但它们在设计理念、使用体验和应用场景上有着显著的差异。今天,我们就来深入探讨这两个框架的特点,帮助你在项目中做出更明智的选择。计算图的构建方式PyTorch的动态图机制是其一大特色。在PyTorch中,计算图是在程序运行时动态构建的,这使得开发者可
- 一个AI应用的开发、上线流程解析
終不似少年遊*
人工智能ai应用ckptonnx模型文件部署推理
目录1.模型文件格式1.1CheckPoint(ckpt)文件格式1.2.pth文件格式1.3.mindir文件格式1.4.onnx文件格式2.推理(Inference)2.1.pth(PyTorch模型格式)2.2.mindir(MindSpore模型格式)2.3.onnx(开放神经网络交换格式)2.4实际例子:自动驾驶系统中的推理模块3.APP与网页4.运维中心与本地部署SDK5.RAG(Re
- 使⽤MATLAB进⾏⽬标检测
唐BiuBiu
机器学习matlab开发语言目标检测深度学习
目录数据准备定义模型并训练用测试集评估性能推理过程⼀⾏代码查看⽹络结构⼀⾏代码转onnx结语⼈⽣苦短,我⽤MATLAB。Pytorch在深度学习领域占据了半壁江⼭,最主要的原因是⽣态完善,⽽且api直观易⽤。但谁能想到现在MATLAB⽤起来⽐Pytorch还好⽤。从数据集划分到训练,再到性能验证和画图,仅仅使⽤了⼏⼗⾏代码。炼丹师们终于可以解放编码时间,把⾃⼰的精⼒放在摸⻥(划掉)算法本身上了。下
- 基于PyTorch的生成对抗网络入门(5)——利用PyTorch搭建条件生成对抗网络(CGAN)超详解
wendy_ya
PyTorchpythonpytorch生成对抗网络深度学习python神经网络
目录一、案例描述二、代码详解2.1构建真实数据集2.2创建生成虚假数据2.3构建判别器2.3.1创建生成虚假标签2.3.2判别器类2.3.3测试判别器2.4构建生成器2.4.1生成器类2.4.2测试生成器2.5训练GAN2.6测试生成器的生成效果一、案例描述本文介绍利用条件生成对抗网络(CGAN)进行手写数字生成。比如说,要求生成不同的,但是都代表某一个数字的图像。二、代码详解2.1构建真实数据集
- Pytorch的自动求导模块
zoujiahui_2018
pytorch人工智能python
文章目录torch.autograd.backward()基本用法非标量张量的反向传播保留计算图指定输入张量高阶梯度计算与y.backward()的区别torch.autograd.grad()基本用法非标量张量的梯度高阶梯度计算多输入、多输出的梯度计算未使用的输入张量保留计算图与backward()的区别torch.autograd.backward()该函数实现自动求导梯度,函数如下:torc
- Python 中如何 import 绝对路径的模块
斐硕人
僧旅python开发语言后端
问题:jupter-lab使用时用到其他文件夹下的一个自定义模块,试图使用绝对路径导入解决方式:importsyssys.path.append('模块所在路径')import路径下需要的模块使用场景:importsyssys.path.append('/Users/feishuoren/Projects/pytorch_learning/')#自定义模块fromtorchLearningimpo
- AI Agent智能应用从0到1定制开发Langchain+LLM全流程解决方案与落地实战
AI知识分享官
人工智能langchain算法数据挖掘计算机视觉机器学习产品经理
大模型微调实战:精通、指令微调、开源大模型微调、对齐与垂直领域应用29套AI全栈大模型项目实战,人工智能视频课程-多模态大模型,微调技术训练营,大模型多场景实战,AI图像处理,AI量化投资,OPenCV视觉处理,机器学习,Pytorch深度学习,推荐系统,自动驾驶,训练私有大模型,LLM大语言模型,大模型多场景实战,Agent智能应用,AIGC实战落地,ChatGPT虚拟数字人,Djourney智
- conda 装tensorboardx_【工欲善其事】TensorboardX的使用
weixin_39719042
conda装tensorboardx
“我不喜欢Tensorflow,但这并不妨碍我使用tensorboard”上一篇文章(https://zhuanlan.zhihu.com/p/39849027),和大家简单地聊了一下关于如何在训练过程中有序地组织log问题。今天,想和大家简单地谈谈tensorboard的使用。经过社区的努力,目前PyTorch也可以使用tensorboard了。在训练过程中实时地观察loss/accuracy曲
- Pytorch实现一个简单DeepSeek中的MLA多头潜在注意力架构
DukeYong
DeepSeek
首先,MLA是什么?可能是指Multi-HeadLocalAttention,即多头局部注意力,这种机制通常用于减少计算量,特别是在处理长序列时,每个头只关注局部区域。比如每个token只注意其周围的一定窗口内的其他token,而不是全局。这可能与传统的Transformer中的滑动窗口或局部注意力类似。接下来,我需要考虑如何将局部注意力与多头机制结合。每个注意力头可能有不同的局部窗口,或者共享相
- Deepseek的MOE架构中ColumnParallelLinear()是怎么实现的
DukeYong
架构
我记得在PyTorch中,模型并行通常涉及到将模型的层分布到不同的GPU上。ColumnParallelLinear可能指的是将线性层的列(即输出神经元)分布在多个设备上。在MoE中,每个专家可能是一个这样的并行层,然后通过门控机制将输入路由到不同的专家。接下来,我需要思考ColumnParallelLinear的具体实现。通常,这种并行线性层会在前向传播时将输入数据分发到各个设备,每个设备处理一
- 小白零基础学习深度学习之张量
爱理科的小王子
学习深度学习人工智能
1.张量PyTorch中的张量(Tensor)就是一种用来存储数据的“盒子”,这个盒子可以有不同的形状和大小,里面可以装各种数字。张量是PyTorch中最基本的东西,就像乐高积木一样,你可以用它来搭建各种复杂的模型。2.张量的用途存储数据:你可以把张量当作一个容器,用来存储各种数据。比如,一张图片可以用一个三维张量来表示,其中第一维是颜色通道(红、绿、蓝),第二维和第三维是图片的宽度和高度。进行计
- 深度学习-情感分析
小赖同学啊
人工智能深度学习人工智能
以下将分别使用PyTorch和TensorFlow框架实现基于深度学习的情感分析,这里以影评的情感分析为例,数据集使用IMDB影评数据集。使用PyTorch实现1.安装必要的库pipinstalltorchtorchtextspacypython-mspacydownloaden_core_web_sm2.代码实现importtorchimporttorch.nnasnnimporttorch.o
- 神经网络常见激活函数 9-CELU函数
亲持红叶
神经网络常见激活函数深度学习机器学习人工智能数学建模神经网络python
文章目录CELU函数+导函数函数和导函数图像优缺点pytorch中的CELU函数tensorflow中的CELU函数CELU连续可微指数线性单元:CELU(ContinuouslyDifferentiableExponentialLinearUnit),是一种连续可导的激活函数,结合了ELU和ReLU的特点,旨在解决ELU在某些情况下的梯度问题。函数+导函数CELU函数CELU(x)={xx≥0α
- 大语言模型LLM代码:PyTorch库与ChatGLM模型
North_D
大语言模型LLM语言模型pytorch人工智能python深度学习自然语言处理大语言模型
文章目录通过阅读大语言模型的代码,熟悉并理解PyTorch大语言模型LLM代码:PyTorch库与ChatGLM模型大语言模型中的PyTorchChatGLM3-6B模型代码ChatGLMModel类总览ChatGLMModel类说明ChatGLMModel类核心代码片段通过阅读大语言模型的代码,熟悉并理解PyTorch大语言模型LLM代码:PyTorch库与ChatGLM模型大语言模型中的PyT
- 使用亚马逊针对 PyTorch 和 MinIO 的 S3 连接器进行模型检查点处理
MinIO分布式存储
分布式存储MinIOpytorch百度云人工智能
2023年11月,Amazon宣布推出适用于PyTorch的S3连接器。适用于PyTorch的AmazonS3连接器提供了专为S3对象存储构建的PyTorch数据集基元(数据集和数据加载器)的实现。它支持用于随机数据访问模式的地图样式数据集和用于流式处理顺序数据访问模式的可迭代样式数据集。适用于PyTorch的S3连接器还包括一个检查点接口,用于将检查点直接保存和加载到S3存储桶,而无需先保存到本
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_