- 【面试宝典】【大模型入门】【模型微调】
曾小文
人工智能深度学习机器学习
面试热点科普:监督微调vs无监督微调,有啥不一样?在大模型时代(比如BERT、GPT)里,我们经常听到“预训练+微调”的范式。但你可能会疑惑——监督微调、无监督微调,到底有啥区别?用的场景一样吗?今天这篇,带你5分钟搞懂这对“孪生兄弟”的异同✅1.术语定义名称定义说明预训练(Pretraining)在大规模通用数据上训练模型,学习“通用知识”,比如语言规律、语义表示。微调(Fine-tuning)
- TeleScan PE
fei_sun
计算机网络单片机stm32嵌入式硬件
目录物理层深度剖析通道结构信号完整性关键技术链路训练(LinkTraining)协议层核心技术TLP(事务层包)结构虚拟通道管理原子操作(PCIe5.0+)硬件实现关键FPGA实现方案信号完整性设计规范总结:PCIe技术本质TeleScanPE是一个免费的PCIExpress/NVMe配置空间读/写实用程序,允许用户扫描、解码、显示和写入PCIExpress/NVMe配置空间寄存器。windows
- Oracle第五章PL/SQL基础
ZShuiShen
oraclesql数据库
Homework-Chapter55.7.1实训Practicaltraining1:PL/SQL基础Basics〖实训目的Trainingpurpose〗(1)学会PL/SQL基本语法;LearnbasicPL/SQLsyntax(2)理解PLSQL语句块的构成。UnderstandthecompositionofPL/SQLstatementblocks〖实训内容Trainingcontent
- AWS SAA-C03考试经过
nianjian
aws云计算
为啥要考?齁贵的。SB公司评绩效要用;放简历里面增加一点信任吧。考试流程:1,先注册个账号链接:https://www.aws.training/certification这里填写姓名时注意,须与参加考试时要求出示的有效身份证件上的姓名一致,否则将无法考试。就是姓名和你身份证一致,当然你身份证上是中文张三,这里最好填写拼音,如名字san,姓zhang。这样就和你之后填写信用卡号对应实体卡上的名字一
- 【腾讯云】考个证...大数据开发工程师认证
runzhliu
腾讯云
作为一个大数据行业的从业者,考个腾讯云大数据开发工程师认证总比考个消防证easy吧…?关于考这个认证的意义其实主要在于全面复习一下大数据相关的知识点,另外有个腾讯云的认证,也许大概也会对你找工作有点帮助的吧?下面是报名的链接和考试大纲。https://cloud.tencent.com/edu/training/cert/detail?type=Big_Data既然是考试,大家肯定会比较关心考试资
- 【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?
985小水博一枚呀
深度学习学习笔记深度学习学习笔记人工智能
【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?文章目录【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?前言✅一、提高模型性能✅二、降低训练成本✅三、迁移学习能力强✅四、模型结构验证过,可靠性高✅五、促进多模态和复杂任务发展总结如何将自己的遥感数据(输入波段为17)用作DenseNet121
- Qwen2.5:模型训练和推理核心参数介绍
艾墨舟启航
大模型实战大模型Trainer参数介绍
详细介绍:https://mp.weixin.qq.com/s/0zLHA_VQkD3tf0BSzjd7Ag一、remove_columns删除选定的列作用:去掉原始数据集里面的字段以及对应的数据。原因:如果不去掉,在进行微调时,模型就会将数据集原始字段和新加的字段一起输入到模型,导致格式与期望的不一致。二、TrainingArguments核心参数2.1基础训练设置参数介绍output_dir(
- 【论文解读】s3: 仅 2.4K 数据即可 RL 训练Search Agent
1stauthro:PatrickJiangpaper:[2505.14146]s3:YouDon’tNeedThatMuchDatatoTrainaSearchAgentviaRLcode:pat-jj/s3:s3-EfficientYetEffectiveSearchAgentTrainingviaRLforRAG5.总结(结果先行)s3框架以其“解耦搜索与生成、仅训练搜索代理、采用GBR奖励
- 预训练、指令微调与RLHF如何塑造LLM
由数入道
人工智能提示词工程交互
大型语言模型(LLM)那令人惊叹的语言理解、生成和在特定引导下的推理能力,并非魔法的产物,而是源于一个极其复杂、耗资巨大且经过精心设计的多阶段训练过程。理解这个训练过程的核心环节——大规模无监督预训练(Pre-training)、指令微调(InstructionFine-Tuning,IFT)以及从人类反馈中强化学习(ReinforcementLearningfromHumanFeedback,R
- HP Openvms education training
vms4ever
traininghpsystemperformancecommandfeatures
HPOpenVMSeducationprogramCoursedeliverymethods:seehowmanywaysweoffercourses!Instructor-ledtraining"Hands-on"»ILT-Instructor-ledtraining,attendatanHPEducationcenter»RAIL-Remotelyassistedinstructionalle
- 论文略读:Does Refusal Training in LLMs Generalize to the Past Tense?
UQI-LIUWJ
论文笔记人工智能
ICLR20251688拒绝训练被广泛用于防止大型语言模型(LLMs)生成有害、不良或非法的内容。我们揭示了当前拒绝训练方法中的一个奇特的泛化缺口:仅仅将一个有害请求改写为过去时(例如,将“HowtomakeaMolotovcocktail?”改为“HowdidpeoplemakeaMolotovcocktail?”)通常就足以破解许多最先进的LLM。我们在多个模型上系统地评估了这一方法,包括Ll
- 医疗人工智能大模型中的关键能力:【中期训练】mid-training
Allen_Lyb
医疗数智化教程人工智能健康医疗架构gpu算力
引言医疗人工智能(AI)领域的快速发展正在重塑医疗保健的未来。从辅助诊断到个性化治疗方案,AI技术已经显示出改变医疗实践的巨大潜力。然而,在将AI技术应用于医疗场景时,我们面临着独特的挑战。医疗数据的复杂性、决策的高风险性以及对可解释性的严格要求,都使得医疗AI的开发和部署比其他领域更为复杂。在这一背景下,"mid-training模型"的概念应运而生。这些模型代表了医疗AI发展的中间阶段,它们不
- 多模态大语言模型arxiv论文略读(117)
胖头鱼爱算法
#mllm_arxiv语言模型深度学习计算机视觉论文笔记论文阅读
Training-freeZero-shotComposedImageRetrievalviaWeightedModalityFusionandSimilarity➡️论文标题:Training-freeZero-shotComposedImageRetrievalviaWeightedModalityFusionandSimilarity➡️论文作者:Ren-DiWu,Yu-YenLin,Hue
- 【NLP】gensim lda使用方法
zkq_1986
NLP
OptimizedLatentDirichletAllocation(LDA)inPython.ForafasterimplementationofLDA(parallelizedformulticoremachines),seealsogensim.models.ldamulticore.ThismoduleallowsbothLDAmodelestimationfromatrainingcor
- RoBERTa相比BERT的改进
火云明月
自然语言处理自然语言处理
继BERT、XLNet之后,Facebook提出的RoBERTa(aRobustlyOptimizedBERTPretrainingApproach)。本篇文章主要总结下RoBERTa相比于BERT的改进。RoBERTa在模型结构层面没有改变,改变的只是预训练的方法,具体是以下三点。1.动态maskRoBERTa把预训练的数据复制10份,每一份都随机选择15%的Tokens进行mask,也就是说,
- #HDC2025# Codelabs训练营精彩内容抢先看!
harmonyos
本次活动现场设置了初、高阶赛题可供挑战,完成2道及以上初阶赛题才可挑战高阶赛题!而拥有HarmonyOS应用开发者认证的开发者可挑战现场任意赛题!还不快来考取证书↓↓↓https://developer.huawei.com/consumer/cn/training/classDetail...完成赛题更有丰富礼品可以赢取!点击长图即刻了解更多活动详情↓↓↓
- 【大模型】大模型微调(上)
油泼辣子多加
大模型实战深度学习机器学习人工智能
一、概念与背景微调(Fine-tuning)是一种迁移学习的方法,通过在已有的预训练模型基础上,利用目标任务的少量标注数据对模型进行二次训练,使其更好地适应特定任务的需求。预训练阶段模型通常使用大规模通用语料(如维基百科、新闻语料)进行无监督或自监督训练,学习通用的语言表示;微调阶段则使用特定任务数据进行有监督学习,实现从通用到专用的知识迁移。预训练(Pre-training):在大规模无标签语料
- BERT:让AI真正“读懂”语言的革命
摘取一颗天上星️
深度学习人工智能bert深度学习
BERT:让AI真正“读懂”语言的革命——图解谷歌神作《BERT:Pre-trainingofDeepBidirectionalTransformers》2018年,谷歌AI团队扔出一篇核弹级论文,引爆了整个NLP领域。这个叫BERT的模型在11项任务中屠榜,甚至超越人类表现!它背后的秘密是什么?本文将用最通俗的方式揭秘它的工作原理。一、传统AI的致命缺陷:单向理解想象你教AI完形填空:“小明买了
- 自然语言处理NLP星空智能对话机器人系列:深入理解Transformer自然语言处理 Training a GPT-2 language model
段智华
NLP星空智能对话机器人transformer自然语言处理GPT
自然语言处理NLP星空智能对话机器人系列:深入理解Transformer自然语言处理TrainingaGPT-2languagemodel目录GPT模型简介TrainingaGPT-2languagemodelStep1:Prerequisites星空智能对话机器人系列博客GPT模型简介生成式预训练转换器(GPT)是由OpenAI团队构建的一系列基于深度学习的语言模型。GPT-3是一个预先训练过的
- Emerging Properties in Unified Multimodal Pretraining
UnknownBody
LLMDailyMultimodal人工智能
文章主要内容总结本文介绍了字节跳动开源的多模态基础模型BAGEL,其核心目标是通过大规模交错多模态数据预训练,实现统一的多模态理解与生成能力。BAGEL采用仅解码器架构和混合Transformer专家(MoT)设计,在文本、图像、视频和网页数据上进行训练,展现出复杂多模态推理的新兴能力,如自由形式图像操作、未来帧预测、3D操作和世界导航等。实验表明,BAGEL在标准基准测试中显著优于开源模型,并通
- 医图论文 AAAI‘25 | KPL:视觉语言模型的免训练医学知识挖掘
小白学视觉
医学图像处理论文解读语言模型人工智能自然语言处理深度学习AAAI医学图像处理医学图像顶会
论文信息题目:KPL:Training-FreeMedicalKnowledgeMiningofVision-LanguageModelsKPL:视觉语言模型的免训练医学知识挖掘作者:JiaxiangLiu、TianxiangHu、JiaweiDu、RuiyuanZhang、JoeyTianyiZhou、ZuozhuLiu源码:https://github.com/JXLiu-AI/KPL论文创新
- 研读论文《Attention Is All You Need》(13)
CS创新实验室
研读论文机器学习人工智能大模型注意力机制attention
原文325TrainingThissectiondescribesthetrainingregimeforourmodels.5.1TrainingDataandBatchingWetrainedonthestandardWMT2014English-Germandatasetconsistingofabout4.5millionsentencepairs.Sentenceswereencoded
- tesseract-ocr训练方法
weixin_34122604
pythonjava人工智能
2019独角兽企业重金招聘Python工程师标准>>>tesseract-ocr有2和3两个版本,不同版本训练方法稍有不同。第3版本的训练方法官版教程在这里:TrainingTesseract3第2版的训练方法官版教程在这里:TrainingTesseract我使用的是最新的3.01版本的。训练所需准备:1.下载并安装3.01版本的tesseract。事实上并不需要安装这步骤,我下载的是压缩包版,
- GeoTorchAI 项目使用与配置指南
尤贝升Sherman
GeoTorchAI项目使用与配置指南GeoTorchAIGeoTorchAI:AFrameworkforTrainingandUsingSpatiotemporalDeepLearningModelsatScale项目地址:https://gitcode.com/gh_mirrors/ge/GeoTorchAI1.项目目录结构及介绍GeoTorchAI的目录结构如下:GeoTorchAI/├──
- 振动分析师(ISO18436-2)四级能力矩阵 - 简介
子正
#技术追踪#测量BeyondProgram预防性维护振动分析PHM笔记
本文的内容绝大多数来自:VCAT-IIVibrationAnalyst-MobiusInstitute相关振动分析员培训招生彩页,特此致谢!内容整理参见:振动分析师四级能力矩阵-知乎。CATI振动分析技术员1.1角色画像CollectvibrationdataValidatethatthedataisgoodBegintoperformbasicanalysisUsethetrainingandc
- CLIP: Learning Transferable Visual Models From Natural Language Supervision学习笔记
sky赞
学习笔记深度学习人工智能计算机视觉
文章目录1.预训练阶段2.zero-shot推理阶段3.模型整体结构的伪代码4.训练AlecRadford,JongWookKimet.al.PMLR,2021.(Citations6185)CLIP(ContrastiveLanguage-ImagePretraining)是一种基于对比学习的模型,由OpenAI提出。它是一种多模态模型,旨在将自然语言和图像进行联合建模,实现图像和文本之间的语义
- 冷启动推荐:系统性综述
jony0917
人工智能
原论文链接:Cold-StartRecommendationtowardstheEraofLargeLanguageModels(LLMs):AComprehensiveSurveyandRoadmapCONTENTFEATURES数据不完整学习(Data-IncompleteLearning)稳健协同训练(RobustCo-Training)稳健泛化(Robustgeneralization):
- 计算机类专业学生重要竞赛刷题网站
花开盛夏^.^
大学生竞赛大学生计算机类专业专业竞赛
团队队员常用:Codeforceshttp://codeforces.com/problemset牛客网https://www.nowcoder.com/ta/acm-training/刷题链接:http://poj.org/pojhttp://www.spoj.com/http://acm.hdu.edu.cn/hduhttps://cn.vjudge.net/vj(包含大部分网站的题库)htt
- 【Pytorch学习笔记】模型模块05——Module常用函数
越轨
Pytorch学习笔记pytorch学习笔记人工智能python
Module常用函数设置训练和评估模式**作用:**在PyTorch中,模型有训练(training)和评估(evaluation)两种模式,它们会影响某些层的行为。主要影响的层:Dropout层:训练时随机丢弃神经元,评估时保持全部神经元BatchNorm层:训练时计算并更新统计量,评估时使用固定统计量LayerNorm层:行为在两种模式下基本一致2.设置方法#设置训练模式model.train
- 自动混合精度(AMP)训练在低版本显卡上的使用问题
shangjg3
Pytorch人工智能
AMPtrainingonNVIDIAGeForceGTX1660SUPERGPUmaycauseNaNlossesorzero-mAPresults,soAMPwillbedisabledduringtraining.这个警告提示表明在NVIDIAGeForceGTX1660SUPER显卡上使用自动混合精度(AMP)训练可能导致损失变为NaN或mAP结果为零,因此训练过程中将自动禁用AMP。以下
- ASM系列四 利用Method 组件动态注入方法逻辑
lijingyao8206
字节码技术jvmAOP动态代理ASM
这篇继续结合例子来深入了解下Method组件动态变更方法字节码的实现。通过前面一篇,知道ClassVisitor 的visitMethod()方法可以返回一个MethodVisitor的实例。那么我们也基本可以知道,同ClassVisitor改变类成员一样,MethodVIsistor如果需要改变方法成员,注入逻辑,也可以
- java编程思想 --内部类
百合不是茶
java内部类匿名内部类
内部类;了解外部类 并能与之通信 内部类写出来的代码更加整洁与优雅
1,内部类的创建 内部类是创建在类中的
package com.wj.InsideClass;
/*
* 内部类的创建
*/
public class CreateInsideClass {
public CreateInsideClass(
- web.xml报错
crabdave
web.xml
web.xml报错
The content of element type "web-app" must match "(icon?,display-
name?,description?,distributable?,context-param*,filter*,filter-mapping*,listener*,servlet*,s
- 泛型类的自定义
麦田的设计者
javaandroid泛型
为什么要定义泛型类,当类中要操作的引用数据类型不确定的时候。
采用泛型类,完成扩展。
例如有一个学生类
Student{
Student(){
System.out.println("I'm a student.....");
}
}
有一个老师类
- CSS清除浮动的4中方法
IT独行者
JavaScriptUIcss
清除浮动这个问题,做前端的应该再熟悉不过了,咱是个新人,所以还是记个笔记,做个积累,努力学习向大神靠近。CSS清除浮动的方法网上一搜,大概有N多种,用过几种,说下个人感受。
1、结尾处加空div标签 clear:both 1 2 3 4
.div
1
{
background
:
#000080
;
border
:
1px
s
- Cygwin使用windows的jdk 配置方法
_wy_
jdkwindowscygwin
1.[vim /etc/profile]
JAVA_HOME="/cgydrive/d/Java/jdk1.6.0_43" (windows下jdk路径为D:\Java\jdk1.6.0_43)
PATH="$JAVA_HOME/bin:${PATH}"
CLAS
- linux下安装maven
无量
mavenlinux安装
Linux下安装maven(转) 1.首先到Maven官网
下载安装文件,目前最新版本为3.0.3,下载文件为
apache-maven-3.0.3-bin.tar.gz,下载可以使用wget命令;
2.进入下载文件夹,找到下载的文件,运行如下命令解压
tar -xvf apache-maven-2.2.1-bin.tar.gz
解压后的文件夹
- tomcat的https 配置,syslog-ng配置
aichenglong
tomcathttp跳转到httpssyslong-ng配置syslog配置
1) tomcat配置https,以及http自动跳转到https的配置
1)TOMCAT_HOME目录下生成密钥(keytool是jdk中的命令)
keytool -genkey -alias tomcat -keyalg RSA -keypass changeit -storepass changeit
- 关于领号活动总结
alafqq
活动
关于某彩票活动的总结
具体需求,每个用户进活动页面,领取一个号码,1000中的一个;
活动要求
1,随机性,一定要有随机性;
2,最少中奖概率,如果注数为3200注,则最多中4注
3,效率问题,(不能每个人来都产生一个随机数,这样效率不高);
4,支持断电(仍然从下一个开始),重启服务;(存数据库有点大材小用,因此不能存放在数据库)
解决方案
1,事先产生随机数1000个,并打
- java数据结构 冒泡排序的遍历与排序
百合不是茶
java
java的冒泡排序是一种简单的排序规则
冒泡排序的原理:
比较两个相邻的数,首先将最大的排在第一个,第二次比较第二个 ,此后一样;
针对所有的元素重复以上的步骤,除了最后一个
例题;将int array[]
- JS检查输入框输入的是否是数字的一种校验方法
bijian1013
js
如下是JS检查输入框输入的是否是数字的一种校验方法:
<form method=post target="_blank">
数字:<input type="text" name=num onkeypress="checkNum(this.form)"><br>
</form>
- Test注解的两个属性:expected和timeout
bijian1013
javaJUnitexpectedtimeout
JUnit4:Test文档中的解释:
The Test annotation supports two optional parameters.
The first, expected, declares that a test method should throw an exception.
If it doesn't throw an exception or if it
- [Gson二]继承关系的POJO的反序列化
bit1129
POJO
父类
package inheritance.test2;
import java.util.Map;
public class Model {
private String field1;
private String field2;
private Map<String, String> infoMap
- 【Spark八十四】Spark零碎知识点记录
bit1129
spark
1. ShuffleMapTask的shuffle数据在什么地方记录到MapOutputTracker中的
ShuffleMapTask的runTask方法负责写数据到shuffle map文件中。当任务执行完成成功,DAGScheduler会收到通知,在DAGScheduler的handleTaskCompletion方法中完成记录到MapOutputTracker中
- WAS各种脚本作用大全
ronin47
WAS 脚本
http://www.ibm.com/developerworks/cn/websphere/library/samples/SampleScripts.html
无意中,在WAS官网上发现的各种脚本作用,感觉很有作用,先与各位分享一下
获取下载
这些示例 jacl 和 Jython 脚本可用于在 WebSphere Application Server 的不同版本中自
- java-12.求 1+2+3+..n不能使用乘除法、 for 、 while 、 if 、 else 、 switch 、 case 等关键字以及条件判断语句
bylijinnan
switch
借鉴网上的思路,用java实现:
public class NoIfWhile {
/**
* @param args
*
* find x=1+2+3+....n
*/
public static void main(String[] args) {
int n=10;
int re=find(n);
System.o
- Netty源码学习-ObjectEncoder和ObjectDecoder
bylijinnan
javanetty
Netty中传递对象的思路很直观:
Netty中数据的传递是基于ChannelBuffer(也就是byte[]);
那把对象序列化为字节流,就可以在Netty中传递对象了
相应的从ChannelBuffer恢复对象,就是反序列化的过程
Netty已经封装好ObjectEncoder和ObjectDecoder
先看ObjectEncoder
ObjectEncoder是往外发送
- spring 定时任务中cronExpression表达式含义
chicony
cronExpression
一个cron表达式有6个必选的元素和一个可选的元素,各个元素之间是以空格分隔的,从左至右,这些元素的含义如下表所示:
代表含义 是否必须 允许的取值范围 &nb
- Nutz配置Jndi
ctrain
JNDI
1、使用JNDI获取指定资源:
var ioc = {
dao : {
type :"org.nutz.dao.impl.NutDao",
args : [ {jndi :"jdbc/dataSource"} ]
}
}
以上方法,仅需要在容器中配置好数据源,注入到NutDao即可.
- 解决 /bin/sh^M: bad interpreter: No such file or directory
daizj
shell
在Linux中执行.sh脚本,异常/bin/sh^M: bad interpreter: No such file or directory。
分析:这是不同系统编码格式引起的:在windows系统中编辑的.sh文件可能有不可见字符,所以在Linux系统下执行会报以上异常信息。
解决:
1)在windows下转换:
利用一些编辑器如UltraEdit或EditPlus等工具
- [转]for 循环为何可恨?
dcj3sjt126com
程序员读书
Java的闭包(Closure)特征最近成为了一个热门话题。 一些精英正在起草一份议案,要在Java将来的版本中加入闭包特征。 然而,提议中的闭包语法以及语言上的这种扩充受到了众多Java程序员的猛烈抨击。
不久前,出版过数十本编程书籍的大作家Elliotte Rusty Harold发表了对Java中闭包的价值的质疑。 尤其是他问道“for 循环为何可恨?”[http://ju
- Android实用小技巧
dcj3sjt126com
android
1、去掉所有Activity界面的标题栏
修改AndroidManifest.xml 在application 标签中添加android:theme="@android:style/Theme.NoTitleBar"
2、去掉所有Activity界面的TitleBar 和StatusBar
修改AndroidManifes
- Oracle 复习笔记之序列
eksliang
Oracle 序列sequenceOracle sequence
转载请出自出处:http://eksliang.iteye.com/blog/2098859
1.序列的作用
序列是用于生成唯一、连续序号的对象
一般用序列来充当数据库表的主键值
2.创建序列语法如下:
create sequence s_emp
start with 1 --开始值
increment by 1 --増长值
maxval
- 有“品”的程序员
gongmeitao
工作
完美程序员的10种品质
完美程序员的每种品质都有一个范围,这个范围取决于具体的问题和背景。没有能解决所有问题的
完美程序员(至少在我们这个星球上),并且对于特定问题,完美程序员应该具有以下品质:
1. 才智非凡- 能够理解问题、能够用清晰可读的代码翻译并表达想法、善于分析并且逻辑思维能力强
(范围:用简单方式解决复杂问题)
- 使用KeleyiSQLHelper类进行分页查询
hvt
sql.netC#asp.nethovertree
本文适用于sql server单主键表或者视图进行分页查询,支持多字段排序。KeleyiSQLHelper类的最新代码请到http://hovertree.codeplex.com/SourceControl/latest下载整个解决方案源代码查看。或者直接在线查看类的代码:http://hovertree.codeplex.com/SourceControl/latest#HoverTree.D
- SVG 教程 (三)圆形,椭圆,直线
天梯梦
svg
SVG <circle> SVG 圆形 - <circle>
<circle> 标签可用来创建一个圆:
下面是SVG代码:
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
<circle cx="100" c
- 链表栈
luyulong
java数据结构
public class Node {
private Object object;
private Node next;
public Node() {
this.next = null;
this.object = null;
}
public Object getObject() {
return object;
}
public
- 基础数据结构和算法十:2-3 search tree
sunwinner
Algorithm2-3 search tree
Binary search tree works well for a wide variety of applications, but they have poor worst-case performance. Now we introduce a type of binary search tree where costs are guaranteed to be loga
- spring配置定时任务
stunizhengjia
springtimer
最近因工作的需要,用到了spring的定时任务的功能,觉得spring还是很智能化的,只需要配置一下配置文件就可以了,在此记录一下,以便以后用到:
//------------------------定时任务调用的方法------------------------------
/**
* 存储过程定时器
*/
publi
- ITeye 8月技术图书有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的8月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
8月试读活动回顾:
http://webmaster.iteye.com/blog/2102830
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《跨终端Web》
gleams:http