在Logistic regression二分类问题中,我们可以使用sigmoid
函数将输入 Wx+b 映射到 (0,1) 区间中,从而得到属于某个类别的概率。将这个问题进行泛化,推广到多分类问题中,我们可以使用softmax
函数,对输出的值归一化为概率值。
这里假设在进入softmax
函数之前,已经有模型输出 C 值,其中 C 是要预测的类别数,模型可以是全连接网络的输出 a ,其输出个数为 C ,即输出为 a1,a2,...,aC 。
所以对每个样本,它属于类别 i 的概率为:
通过上式可以保证 ∑Ci=1yi=1 ,即属于各个类别的概率和为1。
对softmax
函数进行求导,即求
softmax
函数表达式,可以得到:
用我们高中就知道的求导规则:对于
eai (即 g(x) )对 aj 进行求导,要分情况讨论:
1. 如果 i=j ,则求导结果为 eai
2. 如果 i≠j ,则求导结果为 0
再来看 ∑Ck=1eak 对 aj 求导,结果为 eaj 。
所以,当 i=j 时:
对softmax
函数的求导,我在两年前微信校招面试基础研究岗位一面的时候,就遇到过,这个属于比较基础的问题。
在Python中,softmax
函数为:
def softmax(x):
exp_x = np.exp(x)
return exp_x / np.sum(exp_x)
传入[1, 2, 3, 4, 5]
的向量
>>> softmax([1, 2, 3, 4, 5])
array([ 0.01165623, 0.03168492, 0.08612854, 0.23412166, 0.63640865])
但如果输入值较大时:
>>> softmax([1000, 2000, 3000, 4000, 5000])
array([ nan, nan, nan, nan, nan])
这是因为在求exp(x)
时候溢出了:
import math
math.exp(1000)
# Traceback (most recent call last):
# File "", line 1, in
# OverflowError: math range error
一种简单有效避免该问题的方法就是让exp(x)
中的x
值不要那么大或那么小,在softmax
函数的分式上下分别乘以一个非零常数:
nan
的结果更好。
def softmax(x):
shift_x = x - np.max(x)
exp_x = np.exp(shift_x)
return exp_x / np.sum(exp_x)
>>> softmax([1000, 2000, 3000, 4000, 5000])
array([ 0., 0., 0., 0., 1.])
当然这种做法也不是最完美的,因为softmax
函数不可能产生0值,但这总比出现nan
的结果好,并且真实的结果也是非常接近0的。
机器学习里面,对模型的训练都是对Loss function进行优化,在分类问题中,我们一般使用最大似然估计(Maximum likelihood estimation)来构造损失函数。对于输入的 x ,其对应的类标签为 t ,我们的目标是找到这样的 θ 使得 p(t|x) 最大。在二分类的问题中,我们有:
将问题泛化为更一般的情况,多分类问题:
说交叉熵之前先介绍相对熵,相对熵又称为KL散度(Kullback-Leibler Divergence),用来衡量两个分布之间的距离,记为 DKL(p||q)
假设有两个分布 p 和 q ,它们在给定样本集上的相对熵定义为:
回到我们多分类的问题上,真实的类标签可以看作是分布,对某个样本属于哪个类别可以用One-hot的编码方式,是一个维度为 C 的向量,比如在5个类别的分类中,[0, 1, 0, 0, 0]
表示该样本属于第二个类,其概率值为1。我们把真实的类标签分布记为 p ,该分布中, ti=1 当 i 属于它的真实类别 c 。同时,分类模型经过softmax函数之后,也是一个概率分布,因为 ∑Ci=1yi=1 ,所以我们把模型的输出的分布记为 q ,它也是一个维度为 C 的向量,如[0.1, 0.8, 0.05, 0.05, 0]
。
对一个样本来说,真实类标签分布与模型预测的类标签分布可以用交叉熵来表示:
最终,对所有的样本,我们有以下loss function:
对单个样本来说,loss function lCE 对输入 aj 的导数为:
当 i=j 时: ∂yi∂aj=yi(1−yj)
当 i≠j 时: ∂yi∂aj=−yiyj
所以,将求导结果代入上式:
在TensorFlow中,已经有实现好softmax
函数,所以我们可以自己构造交叉熵损失函数:
import tensorflow as tf
import input_data
x = tf.placeholder("float", shape=[None, 784])
label = tf.placeholder("float", shape=[None, 10])
w_fc1 = tf.Variable(tf.truncated_normal([784, 1024], stddev=0.1))
b_fc1 = tf.Variable(tf.constant(0.1, shape=[1024]))
h_fc1 = tf.matmul(x, w_fc1) + b_fc1
w_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))
b_fc2 = tf.Variable(tf.constant(0.1, shape=[10]))
y = tf.nn.softmax(tf.matmul(h_fc1, w_fc2) + b_fc2)
cross_entropy = -tf.reduce_sum(label * tf.log(y))
cross_entropy = -tf.reduce_sum(label * tf.log(y))
是交叉熵的实现。先对所有的输出用softmax
进行转换为概率值,再套用交叉熵的公式。
tf.nn.softmax_cross_entropy_with_logits
(推荐使用)import tensorflow as tf
import input_data
x = tf.placeholder("float", shape=[None, 784])
label = tf.placeholder("float", shape=[None, 10])
w_fc1 = tf.Variable(tf.truncated_normal([784, 1024], stddev=0.1))
b_fc1 = tf.Variable(tf.constant(0.1, shape=[1024]))
h_fc1 = tf.matmul(x, w_fc1) + b_fc1
w_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))
b_fc2 = tf.Variable(tf.constant(0.1, shape=[10]))
y = tf.matmul(h_fc1, w_fc2) + b_fc2
cross_entropy = -tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(labels=label, logits=y))
TensorFlow已经实现好函数,用来计算label
和logits
的softmax
交叉熵。注意,该函数的参数logits
在函数内会用softmax
进行处理,所以传进来时不能是softmax
的输出了。
既然我们可以自己实现交叉熵的损失函数,为什么TensorFlow还要再实现tf.nn.softmax_cross_entropy_with_logits
函数呢?
这个问题在Stack overflow上已经有Google的人出来回答(传送门),原话是:
If you want to do optimization to minimize the cross entropy, AND you’re softmaxing after your last layer, you should use tf.nn.softmax_cross_entropy_with_logits instead of doing it yourself, because it covers numerically unstable corner cases in the mathematically right way. Otherwise, you’ll end up hacking it by adding little epsilons here and there.
也就是说,方法1自己实现的方法会有在前文说的数值不稳定的问题,需要自己在softmax
函数里面加些trick。所以官方推荐如果使用的loss function是最小化交叉熵,并且,最后一层是要经过softmax函数处理,则最好使用tf.nn.softmax_cross_entropy_with_logits
函数,因为它会帮你处理数值不稳定的问题。
全文到此就要结束了,可以看到,前面介绍这么多概念,其实只是为了解释在具体实现时候要做什么样的选择。可能会觉得有些小题大做,但对于NN这个黑盒子来说,我们现暂不能从理论上证明其有效性,那在工程实现上,我们不能再将它当作黑盒子来使用。
博客原文地址:http://blog.csdn.net/behamcheung/article/details/71911133