【精】算法工程师学习线路图,共同进步,随时保持更新

文字版【完成标绿】:

数学基础

1.线性代数基础

    • 一、基本知识
    • 二、向量操作
    • 三、矩阵运算
    • 2019.5月大学线代部分全部完成】

2.概率论基础

    • 一、概率与分布
    • 二、期望
    • 三、方差
    • 四、大数定律及中心极限定理
    • 五、不确定性来源
    • 六、常见概率分布
    • 七、先验分布与后验分布
    • 八、测度论
    • 九、信息论
    • 2019.6月大学概率论部分全部完成】

3.数值计算基础

    • 一、数值稳定性
    • 二、Conditioning
    • 三、梯度下降法
    • 四、海森矩阵
    • 四、牛顿法
    • 五、拟牛顿法
    • 六、约束优化
    • 【大二下学习过一次,待复习】

4.常用函数

    • 一、 sigmoid
    • 二、 softplus
    • 三、Gamma 函数和贝塔函数
    • 【花时间系统学习】

统计学习

0.机器学习简介

    • 一、基本概念
    • 二、监督学习
    • 三、机器学习三要素
    • 【理论知识待学习】

1.线性代数基础

    • 一、线性回归
    • 二、广义线性模型
    • 三、对数几率回归
    • 四、线性判别分析
    • 五、感知机
    • 【理论知识待学习】

2.支持向量机

    • 一、线性可分支持向量机
    • 二、线性支持向量机
    • 三、非线性支持向量机
    • 四、支持向量回归
    • 五、SVDD
    • 六、序列最小最优化方法
    • 七、其它讨论
    • 【理论知识待学习】

3.朴素贝叶斯

    • 一、贝叶斯定理
    • 二、朴素贝叶斯法
    • 三、半朴素贝叶斯分类器
    • 四、其它讨论
    • 【理论知识待学习】

4.决策树

    • 一、原理
    • 二、特征选择
    • 三、生成算法
    • 四、剪枝算法
    • 五、CART
    • 六、连续值、缺失值处理
    • 七、多变量决策树
    • 【理论知识待学习】

5.knn

    • 一、k 近邻算法
    • 二、kd
    • 【理论知识待学习】

6.集成学习

    • 一、集成学习误差
    • 二、Boosting
    • 三、Bagging
    • 四、集成策略
    • 五、多样性分析
    • 【理论知识待学习】

7.梯度提升树

    • 一、提升树
    • 二、xgboost
    • 三、LightGBM
    • 【理论知识待学习,现在会使用python调用】

8.特征工程

    • 一、缺失值处理
    • 二、特征编码
    • 三、数据标准化、正则化
    • 四、特征选择
    • 五、稀疏表示和字典学习
    • 六、多类分类问题
    • 七、类别不平衡问题

9.模型评估

    • 一、泛化能力
    • 二、过拟合、欠拟合
    • 三、偏差方差分解
    • 四、参数估计准则
    • 五、泛化能力评估
    • 六、训练集、验证集、测试集
    • 七、性能度量
    • 七、超参数调节
    • 八、传统机器学习的挑战

10.降维

    • 一、维度灾难
    • 二、主成分分析 PCA
    • 三、核化线性降维 KPCA
    • 四、流形学习
    • 五、度量学习
    • 六、概率PCA
    • 七、独立成分分析
    • 八、t-SNE
    • 九、LargeVis

11.聚类

    • 一、性能度量
    • 二、原型聚类
    • 三、密度聚类
    • 四、层次聚类
    • 五、谱聚类

12.半监督学习

    • 半监督学习
    • 二、半监督 SVM
    • 三、图半监督学习
    • 四、基于分歧的方法
    • 五、半监督聚类
    • 六、 总结

深度学习【未学习】

0.深度学习简介

    • 一、介绍
    • 二、历史

1.机器学习基础

    • 一、基本概念
    • 二、点估计、偏差方差
    • 三、最大似然估计
    • 四、贝叶斯估计
    • 五、随机梯度下降
    • 七、传统机器学习的挑战
    • 八、低维流形

2.深度前馈神经网络

    • 一、基础
    • 二、损失函数
    • 三、输出单元
    • 四、隐单元
    • 五、结构设计
    • 六、历史小记

3.反向传播算法

    • 一、链式法则
    • 二、反向传播
    • 三、深度前馈神经网络
    • 四、实现
    • 五、应用
    • 六、自动微分

4.正则化

    • 一、 基本概念
    • 二、 参数范数正则化
    • 三、 约束正则化
    • 四、 数据集增强
    • 五、 噪声鲁棒性
    • 六、 早停
    • 七、参数共享
    • 八、 dropout
    • 九、 稀疏表达
    • 十、 半监督学习与多任务学习
    • 十一、对抗训练
    • 十二、正切传播算法
    • 十三、 正则化和欠定问题

5.最优化基础

    • 一、代价函数
    • 二、神经网络最优化挑战
    • 三、mini-batch
    • 四、基本优化算法
    • 五、自适应学习率算法
    • 六、二阶近似方法
    • 七、 共轭梯度
    • 八、优化策略和元算法
    • 九、参数初始化策略

6.卷积神经网络

    • 一、卷积运算
    • 二、卷积层、池化层
    • 三、基本卷积的变体
    • 四、算法细节
    • 五、历史和现状

7.循环神经网络

    • 一、RNN计算图
    • 二、循环神经网络
    • 三、长期依赖
    • 四、序列到序列架构
    • 五、递归神经网络
    • 六、回声状态网络
    • 七、LSTM 和其他门控RNN
    • 八、外显记忆

8.工程实践指导原则

    • 一、性能度量
    • 二、默认的基准模型
    • 三、决定是否收集更多数据
    • 四、选择超参数
    • 五、调试策略
    • 六、示例:数字识别系统
    • 七、数据预处理
    • 八、变量初始化
    • 九、结构设计

自然语言处理【了解】

主题模型

    • 一、Unigram Model
    • 二、pLSA Model
    • 三、LDA Model
    • 四、模型讨论

词向量

    • 一、向量空间模型 VSM
    • 二、LSA
    • 三、Word2Vec
    • 四、GloVe

计算机视觉【未学习】

图片分类网络

    • 一、LeNet
    • 二、AlexNet
    • 三、VGG-Net
    • 四、Inception
    • 五、ResNet
    • 六、SENet
    • 七、 DenseNet
    • 八、小型网络
    • 九、趋势

工具

CRF

  • CRF++
    • 一、安装
    • 二、使用
    • 三、Python接口
    • 四、常见错误

Lightgbm【能够基本使用】

  • lightgbm使用指南
    • 一、安装
    • 二、调参
    • 三、进阶
    • 四、API
    • 五、Docker

xgboost【能够基本使用】

  • xgboost使用指南
    • 一、安装
    • 二、调参
    • 三、外存计算
    • 四、 GPU计算
    • 五、单调约束
    • 六、 DART booster
    • 七、Python API

scikit-learn

1.预处理

    • 一、特征处理
    • 二、特征选择
    • 三、字典学习
    • 四、PipeLine

2.降维

    • 一、PCA
    • 二、MDS
    • 三、Isomap
    • 四、LocallyLinearEmbedding
    • 五、FA
    • 六、FastICA
    • 七、t-SNE

3.监督学习模型

    • 一、线性模型
    • 二、支持向量机
    • 三、贝叶斯模型
    • 四、决策树
    • 五、KNN
    • 六、AdaBoost
    • 七、梯度提升树
    • 八、Random Forest

4.模型评估

    • 一、数据集切分
    • 二、性能度量
    • 三、验证曲线 && 学习曲线
    • 四、超参数优化

5.聚类模型

    • 一、KMeans
    • 二、DBSCAN
    • 三、MeanShift
    • 四、AgglomerativeClustering
    • 五、BIRCH
    • 六、GaussianMixture
    • 七、SpectralClustering

6.半监督学习模型

    • 一、标签传播算法

 

Spark【未学习】

1.基础概念

    • 一、核心概念
    • 二、安装和使用
    • 三、 pyspark shell
    • 四、独立应用

2.rdd使用

    • 一、概述
    • 二、创建 RDD
    • 三、转换操作
    • 四、行动操作
    • 五、其他方法和属性
    • 六、持久化
    • 七、分区
    • 八、混洗

3.dataframe使用

    • 一、概述
    • 二、SparkSession
    • 三、DataFrame 创建
    • 四、 DataFrame 保存
    • 五、DataFrame
    • 六、Row
    • 七、Column
    • 八、GroupedData
    • 九、functions

4.累加器和广播变量

    • 一、累加器
    • 二、广播变量

numpy

numpy 使用指南

    • 一、 ndarray
    • 二、 ufunc 函数
    • 三、 函数库
    • 四、数组的存储和加载

scipy【未学习】

scipy 使用指南

    • 一、常数和特殊函数
    • 二、拟合与优化
    • 三、线性代数
    • 四、统计
    • 五、数值积分
    • 六、稀疏矩阵

matplotlib【未学习】

matplotlib 使用指南

    • 一、matplotlib配置
    • 二、 matplotlib Artist
    • 三、基本概念
    • 四、布局
    • 五、 Path
    • 六、 path effect
    • 七、坐标变换
    • 八、 3D 绘图
    • 九、技巧

pandas

pandas 使用指南

    • 一、基本数据结构
    • 二、内部数据结构
    • 三、下标存取
    • 四、运算
    • 五、变换
    • 六、数据清洗
    • 七、字符串操作
    • 八、聚合与分组
    • 九、时间序列
    • 十、DataFrame 绘图
    • 十一、移动窗口函数
    • 十二、数据加载和保存

 

 

图片资料版

【精】算法工程师学习线路图,共同进步,随时保持更新_第1张图片

【精】算法工程师学习线路图,共同进步,随时保持更新_第2张图片

【精】算法工程师学习线路图,共同进步,随时保持更新_第3张图片

【精】算法工程师学习线路图,共同进步,随时保持更新_第4张图片

【精】算法工程师学习线路图,共同进步,随时保持更新_第5张图片

【精】算法工程师学习线路图,共同进步,随时保持更新_第6张图片

 

 

 

你可能感兴趣的:(大数据,算法,人工智能)