运动目标检测的方法

  背景差分:http://docs.opencv.org/3.2.0/d1/dc5/tutorial_background_subtraction.html 

  vb:http://www.telecom.ulg.ac.be/research/vibe/ 

前景检测算法(一)--综述  

前景检测的函数(Improved Background-Foreground Segmentation Methods),在2.4和3.3之间的变化。

在OpenCV 2.4里,有下面3个方法:
BackgroundSubtractorGMG()
This class implements an algorithm described in "Visual Tracking of Human Visitors under Variable-Lighting Conditions for a Responsive Audio Art Installation,"

BackgroundSubtractorMOG()
Gaussian Mixture-based Backbround/Foreground Segmentation Algorithm

BackgroundSubtractorMOG2()
"Improved adaptive Gausian mixture model for background subtraction


在opencv 3.3里,cnt()替代了mog2():
BackgroundSubtractorCNT()
Background subtraction based on counting.
About as fast as MOG2 on a high end system. More than twice faster than MOG2 on cheap hardware


BackgroundSubtractorGMG()
This class implements an algorithm described in "Visual Tracking of Human Visitors under Variable-Lighting Conditions for a Responsive Audio Art Installation,"

BackgroundSubtractorMOG()
Gaussian Mixture-based Backbround/Foreground Segmentation Algorithm 

来源:

opencv前景检测的方法,在2.4.和3.3之间的变化


 


      


你可能感兴趣的:(目标检测,分类)