[Caffe]:关于pycaffe的使用

定制Python层

当我们的网络需要多个输入数据,或者标签维度不为1时,这对于caffe提供的数据层来说是难以实现的。
修改C++源码更使实现算法的效率大打折扣。用Python接口来实现特殊的层对于用户来说是十分高效的选择。那么如何定制自己的Python层呢?

  1. 确定数据层所需参数,如batch_size, source, image_shape 等
  2. 确定数据层有多少输出
  3. 声明Python层
layer{
    name:"data"   #层名称
    type:"Python" #层类别
    top:"data"    #层第一个输出
    top:"label"   #层第二个输出
    python_param{ #Python层参数
        module:"datalayer"    #module名,一般指实现方法的文件名(文件所在目录要包含在PYTHONPATH中,一遍Python编译器找到该module)
        layer: "DataLayer"   #实现方法的类名(包含在上述module里面)
        param_str:"{'source':'/xxx.list','im_shape':(128,128),'batch_size':32}" #Python层需要传入的参数,以字典形式传入(传入参数名与参数形式必须与实现的方法要求一致)
    }
    include{phase:TRAIN}
}

写好Python层之后呢,就开始动手码:
在datalayer.py中码入如下代码:

class DataLayer(caffe.Layer): #继承自caffe.Layer,基本层类
    """
    This is a datalayer for training a cnn model.
    """
    def setup(self, bottom, top):
        self.top_names = ['data', 'label']

        #=== Read input parameters ===

        # params is a python dictionary with layer parameters. 读取传入的参数字典
        params = eval(self.param_str) 

        #Store input as class variables.
        self.batch_size = params['batch_size']

        #Create a batch loader to load the iamges. 定义一个BatchLoader实例来读取数据
        self.batch_loader = BatchLoader(params, None)

        # === reshape tops ===
        # since we use a fixed input image size, we can shape the data layer
        # the shape of top blobs is NxCxHxW.
        top[0].reshape( self.batch_size, 1, params['im_shape'][0], 
            params['im_shape'][1])
        top[1].reshape( self.batch_size, 1, params['im_shape'][0],
            params['im_shape'][1])

    def forward(self, bottom, top):
        """
        Load data.
        """
        for itt in range(self.batch_size):
            # Use the batch loader to load the next image.
            im, label = self.batch_loader.load_next_image()

            # Add directly to the cafe data layer 直接讲数据写入top blob中
            top[0].data[itt, 0, ...] = im
            top[1].data[itt, 0, ...] = label
    def reshape(self, bottom, top): #如需要,写出相应实现
        pass

    def backward(self, bottom, top): #如果定制的层需要后向传播,在这写出实现
        pass
class BatchLoader(object):
    """
    This class abstracts away the loading of images.
    Images can either be loaded singly, or in a batch. The latter is used for
    the asyncronous data layer to preload batches while other processing is
    performed.
    """

    def __init__(self, params, result):
        self.result = result
        self.batch_size = params['batch_size']
        self.source = params['source']
        self.im_shape = params['im_shape']
        # get list of image indexes.
        self.indexlist = [line.rstrip('\n') for line in open(
            self.source)]

        # Current image
        self._cur = 0

        # This class does some simple data-manipulations
        self.transformer = SimpleTransformer()

        print "BatchLoader initialized with {} images.".format(
            len(self.indexlist))

    def load_next_image(self):
        """
        Load the next image in a batch.
        """
        if self._cur == len(self.indexlist):
            self._cur = 0
            npr.shuffle(self.indexlist) #np.random.shuffle
        # Load an image
        image_file_name = self.indexlist[self._cur].split(' ')[0]
        im = np.asarray(cv2.imread(image_file_name, 0), dtype=np.float32)
        im = np.reshape(im, self.im_shape)

        # Load a label image
        label_file_name = self.indexlist[self._cur].split(' ')[1]
        label = np.asarray(cv2.imread(image_file_name, 0), dtype=np.float32)
        label = np.reshape(label, self.im_shape)
        self._cur += 1
        return im, label

在上述类中,用户可以根据自己的需求来实现。然后就是训练:

  1. 直接利用caffe来训练,即caffe train –solver=xxxx
  2. 利用Python来进行训练。(这里我们介绍第二种方法,鉴于第一种可能会出现迷之错误)
import caffe
import numpy as np

if __name__ == '__main__':
    caffe.set_mode_gpu()
    caffe.set_device(0)
    solver_file = 'solver_v2.prototxt'
    max_iter = 1000000

    solver = caffe.get_solver(solver_file)
    #train the model directly according the solver
    #solver.solve() 
    net = solver.net

    #train the model by one by one step 
    for i in range(0, max_iter):
        solver.step(1)

这是一个简单的例子,网络结构已经在solver_file中定义好了,也可以用Python直接定义网络结构。

from caffe import layers as L

#e.g, define a python data layer mentioned above

n = net.NetSpec() 
n.data, n.label = L.Python( python_param = dict(
                module:'datalayer', layer:'DataLayer',
                param_str:"{'source':'xxx', 'im_shape':(xxx,xxx), 
                'batch_size':xxx)}"),ntop = 2) #ntop is the number of the top blobs
n.acc = L.EuclideanLoss(n.data, n.label)
proto = n.to_proto()
with open('train.prototxt','w+') as f:
    f.write(str(proto))

上述代码就给出了利用Python接口写caffe网络结构的例子。

本博文参考caffe官方提供的pascalmultilabeldatalayer,详情请看这里。


                                                                            2017-3-30记

你可能感兴趣的:(Caffe)