一文读懂机器视觉在工业机器人中的作用

随着工业4.0时代的到来,机器视觉在智能制造业领域的作用越来越重要,能让更多用户获取机器视觉的相关基础知识,包括机器视觉技术是如何工作的、它为什么是实现流程自动化和质量改进的正确选择等。接下来由小编带你了解什么是机器视觉….

 

一、我国视觉机器人的发展现状和趋势

 

机器人技术是高新技术的重要组成部分,其产业化的进程在我国刚刚起步,虽然取得了一定的成绩,但仍然存在很多困难和不足,因此更需要多方面的关心和支持。国家政策支持,是加速高新技术产业化的重要前提。我国政府有关部门应组织力量进行充分地调查研究,在此基础上,制定切实可行的推广、应用机器人和促进机器人研究开发的倾斜政策。如在税收、投资和贷款方面对机器人产业实行扶持政策。

 

一文读懂机器视觉在工业机器人中的作用_第1张图片

 

机器视觉是一门学科技术,广泛应用于生产制造检测等工业领域,用来保证产品质量,控制生产流程,感知环境等。机器视觉系统是将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。

 

一文读懂机器视觉在工业机器人中的作用_第2张图片

智能分拣机器人

 

二、机器视觉技术在自动化行业中的典型应用

 

如今,自动化技术在我国发展迅猛,人们对于机器视觉的认识更加深刻,对于它的看法也发生了很大的转变。机器视觉系统提高了生产的自动化程度,让不适合人工作业的危险工作环境变成了可能,让大批量、持续生产变成了现实,大大提高了生产效率和产品精度。快速获取信息并自动处理的性能,也同时为工业生产的信息集成提供了方便。随着机器视觉技术成熟与发展,我们不难发现其应用范围越加的广泛,根据这些领域,我们大致可以概括出机器视觉的五大典型应用,这五大典型应用也基本可以概括出机器视觉技术在工业生产中能够起到的作用。

一文读懂机器视觉在工业机器人中的作用_第3张图片

  1. 图像识别应用
    图像识别,是利用机器视觉对图像进行处理、分析和理解,以识别各种不同模式的目标和对象。图像识别在机器视觉工业领域中最典型的应用就是二维码的识别了,二维码就是我们平时常见的条形码中最为普遍的一种。将大量的数据信息存储在这小小的二维码中,通过条码对产品进行跟踪管理。通过机器视觉系统,可以方便的对各种材质表面的条码进行识别读取,大大提高了现代化生产的效率。

    一文读懂机器视觉在工业机器人中的作用_第4张图片

  2. 图像检测应用
    检测是机器视觉工业领域最主要的应用之一,几乎所有产品都需要检测,而人工检测存在着较多的弊端,人工检测准确性低,长时间工作的话,准确性更是无法保证,而且检测速度慢,容易影响整个生产过程的效率。因此,机器视觉在图像检测的应用方面也非常的广泛,例如:硬币边缘字符的检测。2000年10月新发行的第五套人民币中,壹圆硬币的侧边增强了防伪功能,鉴于生产过程的严格控制要求,在造币的最后一道工序上安装了视觉检测系统。另外,其还可应用于印刷过程中的套色定位以及较色检查、包装过程中的饮料瓶盖的印刷质量检查,产品包装上的条码和字符识别,玻璃瓶的缺陷检测等。其中,机器视觉系统对玻璃瓶的缺陷检测,也包括了药用玻璃瓶范畴,也就是说机器视觉也涉及到了医药领域,其主要检测包括尺寸检测、瓶身外观缺陷检测、瓶肩部缺陷检测、瓶口检测等。

    一文读懂机器视觉在工业机器人中的作用_第5张图片

     

  3. 视觉定位应用

    视觉定位要求机器视觉系统能够快速准确的找到被测零件并确认其位置。在半导体封装领域,设备需要根据机器视觉取得的芯片位置信息调整拾取头,准确拾取芯片并进行绑定,这就是视觉定位在机器视觉工业领域最基本的应用。

  4. 物体测量应用
    机器视觉工业应用最大的特点就是其非接触测量技术,同样具有高精度和高速度的性能,但非接触无磨损,消除了接触测量可能造成的二次损伤隐患。常见的测量应用包括,齿轮,接插件,汽车零部件,IC元件管脚,麻花钻,罗定螺纹检测等。

  5. 物体分拣应用
    实际上,物体分拣应用是建立在识别、检测之后一个环节,通过机器视觉系统将图像进行处理,实现分拣。在机器视觉工业应用中常用于食品分拣、零件表面瑕疵自动分拣、棉花纤维分拣等。

 

辰视智能在工业级机器视觉领域也有多年深耕,并研发出工业机器人3D视觉引导系统、二维定位等国内领先的技术。

 

三、机器视觉二次开发(工业视觉)软件开发对比

 

目前市场上比较流行的视觉开发软件和视觉包有以下几类。

软件平台:

  1. VC:最通用,功能最强大。用户多,和windows搭配,运行性能较好,可以自己写算法,也可以用工具包,而且基本上工具包都支持VC的开发。是大家主要选择的平台。

  2. 2.C#:比较容易上手,特别是完成界面等功能比用VC+MFC难度低了很多,已经逐渐成为流行的使用平台了,算法在调用标准的库或者使用C#+C++混合编程。可以看到目前很多相机厂商的SDK都已经开始使用C#做应用程序了。

  3. LabVIEW:NI的工具图形化开发平台,开发软件快,特别是做工控行业或者自动化测试行业的很多工程师,由于使用labview进行测试测量的广泛性,所以都有labview的基础,再调用NI的Vision图像工具包开发,开发周期短,维护较为容易。

  4. VB、delphi:用的人越来越少了。

  5. 其他:java等没有看到人用过。

视觉包:

  1. halcon:出自德国MVTech。底层的功能算法很多,运算性能快,用其开发需要一定软件功底和图像处理理论。

  2. VisionPro:美国康耐视的图像处理工具包。性能大多数算法性能都很好,性能上没有和halcon直接对比过,但是开发上手比halcon容易。

  3. NI Vision:NI的特点是自动化测试大多数需要的软硬件都有解决方案,有点事软件图形化编程,上手快,开发周期快,缺点是并不是每个软件都非常厉害。视觉工具包的优势是售价比大多数工具包或者算法的天文数字便宜了不少,而且整个工具包一个价格,而不是一个算法一个算法地卖,性能方面在速度和精度没有前两种软件好。

  4. MIL:加拿大maxtrox的产品,是Matrox Imaging Library 的简写。早期推广和普及程度不错,当前似乎主要用户还是早期的做激光设备的一些用户在用,所以用于定位的较多。

  5. CK Vision。创科公司的软件包,相对前面几个工具包来说价格优势比较明显,另外机器视觉需要的功能也基本都有,所以在国内自动化设备特别是批量设备同时需要保护版权的企业而言,用量很大,推广也不错。

  6. 迈斯肯:迈斯肯的视觉主要产品还是条码阅读一类,图像工具包没有用过,不了解,不评价。

  7. OpenCV:感觉openCV更多的还是用在计算机视觉领域,在机器视觉领域其实不算太多,应为机器视觉领域当前主要的应用还是定位、测量、外观、OCR/OCV,感觉这几项都不是opencv的专长。

 

深圳辰视智能科技有限公司是一家集机器视觉、工业智能化于一体的高新技术企业,是由一支中国科学院机器视觉技术研究的精英团队在深圳创立。

辰视智能拥有基于深度学习的三维视觉引导、机器人运动控制、视觉检测、三维建模等方面的核心技术,并研发了机器人三维视觉引导系统 、机器人二维视觉引导系统、三维检测系统、产品外观检测系统等可根据客户需求定制化的智能产品。以高效·低成本·模块化的方式为自动化集成商、自动化设备厂商、机器人厂家提供机器视觉的相关解决方案。 

一文读懂机器视觉在工业机器人中的作用_第6张图片

一文读懂机器视觉在工业机器人中的作用_第7张图片

一文读懂机器视觉在工业机器人中的作用_第8张图片

一文读懂机器视觉在工业机器人中的作用_第9张图片

一文读懂机器视觉在工业机器人中的作用_第10张图片

你可能感兴趣的:(一文读懂机器视觉在工业机器人中的作用)