算法4第4章加权有向图Dijkstra/BellmanFord最短路径算法关键路径算法讲解

最短路径即从一个顶点到达另一个顶点成本最小的路径,例如利用导航软件获取从一个地方到达另一个地方的路径,顶点对应路口,边对应公路,边的权重对应经过该路段的成本,可以是时间或距离,如果有单行线,那就要考虑加权有向图。

加权有向图的数据结构实现如下

public class EdgeWeightedDigraph {
    private static final String NEWLINE = System.getProperty("line.separator");

    private final int V;                // number of vertices in this digraph
    private int E;                      // number of edges in this digraph
    private Bag[] adj;    // adj[v] = adjacency list for vertex v
    private int[] indegree;             // indegree[v] = indegree of vertex v
    
    /**
     * Initializes an empty edge-weighted digraph with {@code V} vertices and 0 edges.
     *
     * @param  V the number of vertices
     * @throws IllegalArgumentException if {@code V < 0}
     */
    public EdgeWeightedDigraph(int V) {
        if (V < 0) throw new IllegalArgumentException("Number of vertices in a Digraph must be nonnegative");
        this.V = V;
        this.E = 0;
        this.indegree = new int[V];
        adj = (Bag[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag();
    }

    /**
     * Initializes a random edge-weighted digraph with {@code V} vertices and E edges.
     *
     * @param  V the number of vertices
     * @param  E the number of edges
     * @throws IllegalArgumentException if {@code V < 0}
     * @throws IllegalArgumentException if {@code E < 0}
     */
    public EdgeWeightedDigraph(int V, int E) {
        this(V);
        if (E < 0) throw new IllegalArgumentException("Number of edges in a Digraph must be nonnegative");
        for (int i = 0; i < E; i++) {
            int v = StdRandom.uniform(V);
            int w = StdRandom.uniform(V);
            double weight = 0.01 * StdRandom.uniform(100);
            DirectedEdge e = new DirectedEdge(v, w, weight);
            addEdge(e);
        }
    }

    /**  
     * Initializes an edge-weighted digraph from the specified input stream.
     * The format is the number of vertices V,
     * followed by the number of edges E,
     * followed by E pairs of vertices and edge weights,
     * with each entry separated by whitespace.
     *
     * @param  in the input stream
     * @throws IllegalArgumentException if the endpoints of any edge are not in prescribed range
     * @throws IllegalArgumentException if the number of vertices or edges is negative
     */
    public EdgeWeightedDigraph(In in) {
        this(in.readInt());
        int E = in.readInt();
        if (E < 0) throw new IllegalArgumentException("Number of edges must be nonnegative");
        for (int i = 0; i < E; i++) {
            int v = in.readInt();
            int w = in.readInt();
            validateVertex(v);
            validateVertex(w);
            double weight = in.readDouble();
            addEdge(new DirectedEdge(v, w, weight));
        }
    }

    /**
     * Initializes a new edge-weighted digraph that is a deep copy of {@code G}.
     *
     * @param  G the edge-weighted digraph to copy
     */
    public EdgeWeightedDigraph(EdgeWeightedDigraph G) {
        this(G.V());
        this.E = G.E();
        for (int v = 0; v < G.V(); v++)
            this.indegree[v] = G.indegree(v);
        for (int v = 0; v < G.V(); v++) {
            // reverse so that adjacency list is in same order as original
            Stack reverse = new Stack();
            for (DirectedEdge e : G.adj[v]) {
                reverse.push(e);
            }
            for (DirectedEdge e : reverse) {
                adj[v].add(e);
            }
        }
    }

    /**
     * Returns the number of vertices in this edge-weighted digraph.
     *
     * @return the number of vertices in this edge-weighted digraph
     */
    public int V() {
        return V;
    }

    /**
     * Returns the number of edges in this edge-weighted digraph.
     *
     * @return the number of edges in this edge-weighted digraph
     */
    public int E() {
        return E;
    }

    // throw an IllegalArgumentException unless {@code 0 <= v < V}
    private void validateVertex(int v) {
        if (v < 0 || v >= V)
            throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1));
    }

    /**
     * Adds the directed edge {@code e} to this edge-weighted digraph.
     *
     * @param  e the edge
     * @throws IllegalArgumentException unless endpoints of edge are between {@code 0}
     *         and {@code V-1}
     */
    public void addEdge(DirectedEdge e) {
        int v = e.from();
        int w = e.to();
        validateVertex(v);
        validateVertex(w);
        adj[v].add(e);
        indegree[w]++;
        E++;
    }


    /**
     * Returns the directed edges incident from vertex {@code v}.
     *
     * @param  v the vertex
     * @return the directed edges incident from vertex {@code v} as an Iterable
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public Iterable adj(int v) {
        validateVertex(v);
        return adj[v];
    }

    /**
     * Returns the number of directed edges incident from vertex {@code v}.
     * This is known as the outdegree of vertex {@code v}.
     *
     * @param  v the vertex
     * @return the outdegree of vertex {@code v}
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public int outdegree(int v) {
        validateVertex(v);
        return adj[v].size();
    }

    /**
     * Returns the number of directed edges incident to vertex {@code v}.
     * This is known as the indegree of vertex {@code v}.
     *
     * @param  v the vertex
     * @return the indegree of vertex {@code v}
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public int indegree(int v) {
        validateVertex(v);
        return indegree[v];
    }

    /**
     * Returns all directed edges in this edge-weighted digraph.
     * To iterate over the edges in this edge-weighted digraph, use foreach notation:
     * {@code for (DirectedEdge e : G.edges())}.
     *
     * @return all edges in this edge-weighted digraph, as an iterable
     */
    public Iterable edges() {
        Bag list = new Bag();
        for (int v = 0; v < V; v++) {
            for (DirectedEdge e : adj(v)) {
                list.add(e);
            }
        }
        return list;
    }

    /**
     * Returns a string representation of this edge-weighted digraph.
     *
     * @return the number of vertices V, followed by the number of edges E,
     *         followed by the V adjacency lists of edges
     */
    public String toString() {
        StringBuilder s = new StringBuilder();
        s.append(V + " " + E + NEWLINE);
        for (int v = 0; v < V; v++) {
            s.append(v + ": ");
            for (DirectedEdge e : adj[v]) {
                s.append(e + "  ");
            }
            s.append(NEWLINE);
        }
        return s.toString();
    }

    /**
     * Unit tests the {@code EdgeWeightedDigraph} data type.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {
        In in = new In(args[0]);
        EdgeWeightedDigraph G = new EdgeWeightedDigraph(in);
        StdOut.println(G);
    }

}

public class DirectedEdge {
    private final int v;
    private final int w;
    private final double weight;

    /**
     * Initializes a directed edge from vertex {@code v} to vertex {@code w} with
     * the given {@code weight}.
     * @param v the tail vertex
     * @param w the head vertex
     * @param weight the weight of the directed edge
     * @throws IllegalArgumentException if either {@code v} or {@code w}
     *    is a negative integer
     * @throws IllegalArgumentException if {@code weight} is {@code NaN}
     */
    public DirectedEdge(int v, int w, double weight) {
        if (v < 0) throw new IllegalArgumentException("Vertex names must be nonnegative integers");
        if (w < 0) throw new IllegalArgumentException("Vertex names must be nonnegative integers");
        if (Double.isNaN(weight)) throw new IllegalArgumentException("Weight is NaN");
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    /**
     * Returns the tail vertex of the directed edge.
     * @return the tail vertex of the directed edge
     */
    public int from() {
        return v;
    }

    /**
     * Returns the head vertex of the directed edge.
     * @return the head vertex of the directed edge
     */
    public int to() {
        return w;
    }

    /**
     * Returns the weight of the directed edge.
     * @return the weight of the directed edge
     */
    public double weight() {
        return weight;
    }

    /**
     * Returns a string representation of the directed edge.
     * @return a string representation of the directed edge
     */
    public String toString() {
        return v + "->" + w + " " + String.format("%5.2f", weight);
    }

    /**
     * Unit tests the {@code DirectedEdge} data type.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {
        DirectedEdge e = new DirectedEdge(12, 34, 5.67);
        StdOut.println(e);
    }
}
Dijkstra算法能够解决边权重非负的加权有向图的单起点最短路径问题,Dijkstra算法的过程类似Prim算法,对于起点s首先标记distTo[s] = 0.0;其他顶点v标记distTo[v]是无穷大,distTo[v]表示起点s到v的距离,首先将s的领边加入最短路径树,并将s相邻的顶点按distTo[v]的大小加入优先队列,然后从队列中取一个顶点,把该顶点相领顶点加入优先队列,领边加入最短路径树,加入的过程中如果某个顶点已经在树中或优先队列中但新的边会使s到这个点更近,则更换s到这个顶点的路径,直到所有顶点遍历完成,Dijkstra算法的时间复杂度是Elog(V)
轨迹图如下

算法4第4章加权有向图Dijkstra/BellmanFord最短路径算法关键路径算法讲解_第1张图片

算法4第4章加权有向图Dijkstra/BellmanFord最短路径算法关键路径算法讲解_第2张图片

public class DijkstraSP {
    private double[] distTo;          // distTo[v] = distance  of shortest s->v path
    private DirectedEdge[] edgeTo;    // edgeTo[v] = last edge on shortest s->v path
    private IndexMinPQ pq;    // priority queue of vertices

    /**
     * Computes a shortest-paths tree from the source vertex {@code s} to every other
     * vertex in the edge-weighted digraph {@code G}.
     *
     * @param  G the edge-weighted digraph
     * @param  s the source vertex
     * @throws IllegalArgumentException if an edge weight is negative
     * @throws IllegalArgumentException unless {@code 0 <= s < V}
     */
    public DijkstraSP(EdgeWeightedDigraph G, int s) {
        for (DirectedEdge e : G.edges()) {
            if (e.weight() < 0)
                throw new IllegalArgumentException("edge " + e + " has negative weight");
        }

        distTo = new double[G.V()];
        edgeTo = new DirectedEdge[G.V()];

        validateVertex(s);

        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;

        // relax vertices in order of distance from s
        pq = new IndexMinPQ(G.V());
        pq.insert(s, distTo[s]);
        while (!pq.isEmpty()) {
            int v = pq.delMin();
            for (DirectedEdge e : G.adj(v))
                relax(e);
        }

        // check optimality conditions
        assert check(G, s);
    }

    // relax edge e and update pq if changed
    private void relax(DirectedEdge e) {
        int v = e.from(), w = e.to();
        if (distTo[w] > distTo[v] + e.weight()) {
            distTo[w] = distTo[v] + e.weight();
            edgeTo[w] = e;
            if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
            else                pq.insert(w, distTo[w]);
        }
    }

    /**
     * Returns the length of a shortest path from the source vertex {@code s} to vertex {@code v}.
     * @param  v the destination vertex
     * @return the length of a shortest path from the source vertex {@code s} to vertex {@code v};
     *         {@code Double.POSITIVE_INFINITY} if no such path
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public double distTo(int v) {
        validateVertex(v);
        return distTo[v];
    }

    /**
     * Returns true if there is a path from the source vertex {@code s} to vertex {@code v}.
     *
     * @param  v the destination vertex
     * @return {@code true} if there is a path from the source vertex
     *         {@code s} to vertex {@code v}; {@code false} otherwise
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public boolean hasPathTo(int v) {
        validateVertex(v);
        return distTo[v] < Double.POSITIVE_INFINITY;
    }

    /**
     * Returns a shortest path from the source vertex {@code s} to vertex {@code v}.
     *
     * @param  v the destination vertex
     * @return a shortest path from the source vertex {@code s} to vertex {@code v}
     *         as an iterable of edges, and {@code null} if no such path
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public Iterable pathTo(int v) {
        validateVertex(v);
        if (!hasPathTo(v)) return null;
        Stack path = new Stack();
        for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) {
            path.push(e);
        }
        return path;
    }


    // check optimality conditions:
    // (i) for all edges e:            distTo[e.to()] <= distTo[e.from()] + e.weight()
    // (ii) for all edge e on the SPT: distTo[e.to()] == distTo[e.from()] + e.weight()
    private boolean check(EdgeWeightedDigraph G, int s) {

        // check that edge weights are nonnegative
        for (DirectedEdge e : G.edges()) {
            if (e.weight() < 0) {
                System.err.println("negative edge weight detected");
                return false;
            }
        }

        // check that distTo[v] and edgeTo[v] are consistent
        if (distTo[s] != 0.0 || edgeTo[s] != null) {
            System.err.println("distTo[s] and edgeTo[s] inconsistent");
            return false;
        }
        for (int v = 0; v < G.V(); v++) {
            if (v == s) continue;
            if (edgeTo[v] == null && distTo[v] != Double.POSITIVE_INFINITY) {
                System.err.println("distTo[] and edgeTo[] inconsistent");
                return false;
            }
        }

        // check that all edges e = v->w satisfy distTo[w] <= distTo[v] + e.weight()
        for (int v = 0; v < G.V(); v++) {
            for (DirectedEdge e : G.adj(v)) {
                int w = e.to();
                if (distTo[v] + e.weight() < distTo[w]) {
                    System.err.println("edge " + e + " not relaxed");
                    return false;
                }
            }
        }

        // check that all edges e = v->w on SPT satisfy distTo[w] == distTo[v] + e.weight()
        for (int w = 0; w < G.V(); w++) {
            if (edgeTo[w] == null) continue;
            DirectedEdge e = edgeTo[w];
            int v = e.from();
            if (w != e.to()) return false;
            if (distTo[v] + e.weight() != distTo[w]) {
                System.err.println("edge " + e + " on shortest path not tight");
                return false;
            }
        }
        return true;
    }

    // throw an IllegalArgumentException unless {@code 0 <= v < V}
    private void validateVertex(int v) {
        int V = distTo.length;
        if (v < 0 || v >= V)
            throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1));
    }

    /**
     * Unit tests the {@code DijkstraSP} data type.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {
        In in = new In(args[0]);
        EdgeWeightedDigraph G = new EdgeWeightedDigraph(in);
        int s = Integer.parseInt(args[1]);

        // compute shortest paths
        DijkstraSP sp = new DijkstraSP(G, s);


        // print shortest path
        for (int t = 0; t < G.V(); t++) {
            if (sp.hasPathTo(t)) {
                StdOut.printf("%d to %d (%.2f)  ", s, t, sp.distTo(t));
                for (DirectedEdge e : sp.pathTo(t)) {
                    StdOut.print(e + "   ");
                }
                StdOut.println();
            }
            else {
                StdOut.printf("%d to %d         no path\n", s, t);
            }
        }
    }

}
对于无环加权有向图计算最短路径有更快更简单的算法,首先将顶点进行拓扑排序,然后按拓扑排序的顺序遍历每个顶点,将顶点的领边加入最小路径树,该算法可以在线性时间内计算最短路径并且可以有负权重的边,稍做修改就可以计算最长路径

代码如下
public class AcyclicSP {
    private double[] distTo;         // distTo[v] = distance  of shortest s->v path
    private DirectedEdge[] edgeTo;   // edgeTo[v] = last edge on shortest s->v path


    /**
     * Computes a shortest paths tree from {@code s} to every other vertex in
     * the directed acyclic graph {@code G}.
     * @param G the acyclic digraph
     * @param s the source vertex
     * @throws IllegalArgumentException if the digraph is not acyclic
     * @throws IllegalArgumentException unless {@code 0 <= s < V}
     */
    public AcyclicSP(EdgeWeightedDigraph G, int s) {
        distTo = new double[G.V()];
        edgeTo = new DirectedEdge[G.V()];

        validateVertex(s);

        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;

        // visit vertices in topological order
        Topological topological = new Topological(G);
        if (!topological.hasOrder())
            throw new IllegalArgumentException("Digraph is not acyclic.");
        for (int v : topological.order()) {
            for (DirectedEdge e : G.adj(v))
                relax(e);
        }
    }

    // relax edge e
    private void relax(DirectedEdge e) {
        int v = e.from(), w = e.to();
        if (distTo[w] > distTo[v] + e.weight()) {
            distTo[w] = distTo[v] + e.weight();
            edgeTo[w] = e;
        }       
    }

    /**
     * Returns the length of a shortest path from the source vertex {@code s} to vertex {@code v}.
     * @param  v the destination vertex
     * @return the length of a shortest path from the source vertex {@code s} to vertex {@code v};
     *         {@code Double.POSITIVE_INFINITY} if no such path
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public double distTo(int v) {
        validateVertex(v);
        return distTo[v];
    }

    /**
     * Is there a path from the source vertex {@code s} to vertex {@code v}?
     * @param  v the destination vertex
     * @return {@code true} if there is a path from the source vertex
     *         {@code s} to vertex {@code v}, and {@code false} otherwise
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public boolean hasPathTo(int v) {
        validateVertex(v);
        return distTo[v] < Double.POSITIVE_INFINITY;
    }

    /**
     * Returns a shortest path from the source vertex {@code s} to vertex {@code v}.
     * @param  v the destination vertex
     * @return a shortest path from the source vertex {@code s} to vertex {@code v}
     *         as an iterable of edges, and {@code null} if no such path
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public Iterable pathTo(int v) {
        validateVertex(v);
        if (!hasPathTo(v)) return null;
        Stack path = new Stack();
        for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) {
            path.push(e);
        }
        return path;
    }

    // throw an IllegalArgumentException unless {@code 0 <= v < V}
    private void validateVertex(int v) {
        int V = distTo.length;
        if (v < 0 || v >= V)
            throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1));
    }

    /**
     * Unit tests the {@code AcyclicSP} data type.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {
        In in = new In(args[0]);
        int s = Integer.parseInt(args[1]);
        EdgeWeightedDigraph G = new EdgeWeightedDigraph(in);

        // find shortest path from s to each other vertex in DAG
        AcyclicSP sp = new AcyclicSP(G, s);
        for (int v = 0; v < G.V(); v++) {
            if (sp.hasPathTo(v)) {
                StdOut.printf("%d to %d (%.2f)  ", s, v, sp.distTo(v));
                for (DirectedEdge e : sp.pathTo(v)) {
                    StdOut.print(e + "   ");
                }
                StdOut.println();
            }
            else {
                StdOut.printf("%d to %d         no path\n", s, v);
            }
        }
    }
}

关键路径

给定一组待完成的任务,以及一组关于任务完成先后顺序的优先级限制,在满足优先级限制的前提下,如何在若干相同的服务器下安排任务并在最短的时间完成所有任务,假设服务器数量不限
例如0-9个任务按优先级限制排列后如下图所示,其中0-9-6-8-2这条路径的总时间决定了所有任务的完成时间,这条路径叫做关键路径。
寻找关键路径的方法与计算无环加权有向图的最长路径是等价的,根据任务的优先级限制构造无环加权有向图,计算机出最长路径树就可以解决这个问题

算法4第4章加权有向图Dijkstra/BellmanFord最短路径算法关键路径算法讲解_第3张图片

算法4第4章加权有向图Dijkstra/BellmanFord最短路径算法关键路径算法讲解_第4张图片

实现步骤如下

算法4第4章加权有向图Dijkstra/BellmanFord最短路径算法关键路径算法讲解_第5张图片
示意图如下

算法4第4章加权有向图Dijkstra/BellmanFord最短路径算法关键路径算法讲解_第6张图片
代码如下
/******************************************************************************
 *  Compilation:  javac CPM.java
 *  Execution:    java CPM < input.txt
 *  Dependencies: EdgeWeightedDigraph.java AcyclicDigraphLP.java StdOut.java
 *  Data files:   https://algs4.cs.princeton.edu/44sp/jobsPC.txt
 *
 *  Critical path method.
 *
 *  % java CPM < jobsPC.txt
 *   job   start  finish
 *  --------------------
 *     0     0.0    41.0
 *     1    41.0    92.0
 *     2   123.0   173.0
 *     3    91.0   127.0
 *     4    70.0   108.0
 *     5     0.0    45.0
 *     6    70.0    91.0
 *     7    41.0    73.0
 *     8    91.0   123.0
 *     9    41.0    70.0
 *  Finish time:   173.0
 *
 ******************************************************************************/

/**
 *  The {@code CPM} class provides a client that solves the
 *  parallel precedence-constrained job scheduling problem
 *  via the critical path method. It reduces the problem
 *  to the longest-paths problem in edge-weighted DAGs.
 *  It builds an edge-weighted digraph (which must be a DAG)
 *  from the job-scheduling problem specification,
 *  finds the longest-paths tree, and computes the longest-paths
 *  lengths (which are precisely the start times for each job).
 * 


 *  This implementation uses {@link AcyclicLP} to find a longest
 *  path in a DAG.
 *  The running time is proportional to V + E,
 *  where V is the number of jobs and E is the
 *  number of precedence constraints.
 * 


 *  For additional documentation,
 *  see Section 4.4 of
 *  Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne.
 *
 *  @author Robert Sedgewick
 *  @author Kevin Wayne
 */
public class CPM {

    // this class cannot be instantiated
    private CPM() { }

    /**
     *  Reads the precedence constraints from standard input
     *  and prints a feasible schedule to standard output.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {

        // number of jobs
        int n = StdIn.readInt();

        // source and sink
        int source = 2*n;
        int sink   = 2*n + 1;

        // build network
        EdgeWeightedDigraph G = new EdgeWeightedDigraph(2*n + 2);
        for (int i = 0; i < n; i++) {
            double duration = StdIn.readDouble();
            G.addEdge(new DirectedEdge(source, i, 0.0));
            G.addEdge(new DirectedEdge(i+n, sink, 0.0));
            G.addEdge(new DirectedEdge(i, i+n,    duration));

            // precedence constraints
            int m = StdIn.readInt();
            for (int j = 0; j < m; j++) {
                int precedent = StdIn.readInt();
                G.addEdge(new DirectedEdge(n+i, precedent, 0.0));
            }
        }

        // compute longest path
        AcyclicLP lp = new AcyclicLP(G, source);

        // print results
        StdOut.println(" job   start  finish");
        StdOut.println("--------------------");
        for (int i = 0; i < n; i++) {
            StdOut.printf("%4d %7.1f %7.1f\n", i, lp.distTo(i), lp.distTo(i+n));
        }
        StdOut.printf("Finish time: %7.1f\n", lp.distTo(sink));
    }

}

BellmanFord算法可以计算有环和负权重边的加权有向图的最短路径,但不能有负权重环(总权重为负的环)
BellmanFord算法和Dijkstra算法代码比较像,Dijkstra用的优先队列,BellmanFord用的一般FIFO队列并且检查是否有负权重环
BellmanFord算法时间复杂度O(EV)
/******************************************************************************
 *  Compilation:  javac BellmanFordSP.java
 *  Execution:    java BellmanFordSP filename.txt s
 *  Dependencies: EdgeWeightedDigraph.java DirectedEdge.java Queue.java
 *                EdgeWeightedDirectedCycle.java
 *  Data files:   https://algs4.cs.princeton.edu/44sp/tinyEWDn.txt
 *                https://algs4.cs.princeton.edu/44sp/mediumEWDnc.txt
 *
 *  Bellman-Ford shortest path algorithm. Computes the shortest path tree in
 *  edge-weighted digraph G from vertex s, or finds a negative cost cycle
 *  reachable from s.
 *
 *  % java BellmanFordSP tinyEWDn.txt 0
 *  0 to 0 ( 0.00)  
 *  0 to 1 ( 0.93)  0->2  0.26   2->7  0.34   7->3  0.39   3->6  0.52   6->4 -1.25   4->5  0.35   5->1  0.32
 *  0 to 2 ( 0.26)  0->2  0.26   
 *  0 to 3 ( 0.99)  0->2  0.26   2->7  0.34   7->3  0.39   
 *  0 to 4 ( 0.26)  0->2  0.26   2->7  0.34   7->3  0.39   3->6  0.52   6->4 -1.25   
 *  0 to 5 ( 0.61)  0->2  0.26   2->7  0.34   7->3  0.39   3->6  0.52   6->4 -1.25   4->5  0.35
 *  0 to 6 ( 1.51)  0->2  0.26   2->7  0.34   7->3  0.39   3->6  0.52   
 *  0 to 7 ( 0.60)  0->2  0.26   2->7  0.34   
 *
 *  % java BellmanFordSP tinyEWDnc.txt 0
 *  4->5  0.35
 *  5->4 -0.66
 *
 *
 ******************************************************************************/

/**
 *  The {@code BellmanFordSP} class represents a data type for solving the
 *  single-source shortest paths problem in edge-weighted digraphs with
 *  no negative cycles.
 *  The edge weights can be positive, negative, or zero.
 *  This class finds either a shortest path from the source vertex s
 *  to every other vertex or a negative cycle reachable from the source vertex.
 * 


 *  This implementation uses the Bellman-Ford-Moore algorithm.
 *  The constructor takes time proportional to V (V + E)
 *  in the worst case, where V is the number of vertices and E
 *  is the number of edges.
 *  Each call to {@code distTo(int)} and {@code hasPathTo(int)},
 *  {@code hasNegativeCycle} takes constant time;
 *  each call to {@code pathTo(int)} and {@code negativeCycle()}
 *  takes time proportional to length of the path returned.
 * 


 *  For additional documentation,    
 *  see Section 4.4 of    
 *  Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne.
 *
 *  @author Robert Sedgewick
 *  @author Kevin Wayne
 */
public class BellmanFordSP {
    private double[] distTo;               // distTo[v] = distance  of shortest s->v path
    private DirectedEdge[] edgeTo;         // edgeTo[v] = last edge on shortest s->v path
    private boolean[] onQueue;             // onQueue[v] = is v currently on the queue?
    private Queue queue;          // queue of vertices to relax
    private int cost;                      // number of calls to relax()
    private Iterable cycle;  // negative cycle (or null if no such cycle)

    /**
     * Computes a shortest paths tree from {@code s} to every other vertex in
     * the edge-weighted digraph {@code G}.
     * @param G the acyclic digraph
     * @param s the source vertex
     * @throws IllegalArgumentException unless {@code 0 <= s < V}
     */
    public BellmanFordSP(EdgeWeightedDigraph G, int s) {
        distTo  = new double[G.V()];
        edgeTo  = new DirectedEdge[G.V()];
        onQueue = new boolean[G.V()];
        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;

        // Bellman-Ford algorithm
        queue = new Queue();
        queue.enqueue(s);
        onQueue[s] = true;
        while (!queue.isEmpty() && !hasNegativeCycle()) {
            int v = queue.dequeue();
            onQueue[v] = false;
            relax(G, v);
        }

        assert check(G, s);
    }

    // relax vertex v and put other endpoints on queue if changed
    private void relax(EdgeWeightedDigraph G, int v) {
        for (DirectedEdge e : G.adj(v)) {
            int w = e.to();
            if (distTo[w] > distTo[v] + e.weight()) {
                distTo[w] = distTo[v] + e.weight();
                edgeTo[w] = e;
                if (!onQueue[w]) {
                    queue.enqueue(w);
                    onQueue[w] = true;
                }
            }
            if (cost++ % G.V() == 0) {
                findNegativeCycle();
                if (hasNegativeCycle()) return;  // found a negative cycle
            }
        }
    }

    /**
     * Is there a negative cycle reachable from the source vertex {@code s}?
     * @return {@code true} if there is a negative cycle reachable from the
     *    source vertex {@code s}, and {@code false} otherwise
     */
    public boolean hasNegativeCycle() {
        return cycle != null;
    }

    /**
     * Returns a negative cycle reachable from the source vertex {@code s}, or {@code null}
     * if there is no such cycle.
     * @return a negative cycle reachable from the soruce vertex {@code s}
     *    as an iterable of edges, and {@code null} if there is no such cycle
     */
    public Iterable negativeCycle() {
        return cycle;
    }

    // by finding a cycle in predecessor graph
    private void findNegativeCycle() {
        int V = edgeTo.length;
        EdgeWeightedDigraph spt = new EdgeWeightedDigraph(V);
        for (int v = 0; v < V; v++)
            if (edgeTo[v] != null)
                spt.addEdge(edgeTo[v]);

        EdgeWeightedDirectedCycle finder = new EdgeWeightedDirectedCycle(spt);
        cycle = finder.cycle();
    }

    /**
     * Returns the length of a shortest path from the source vertex {@code s} to vertex {@code v}.
     * @param  v the destination vertex
     * @return the length of a shortest path from the source vertex {@code s} to vertex {@code v};
     *         {@code Double.POSITIVE_INFINITY} if no such path
     * @throws UnsupportedOperationException if there is a negative cost cycle reachable
     *         from the source vertex {@code s}
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public double distTo(int v) {
        validateVertex(v);
        if (hasNegativeCycle())
            throw new UnsupportedOperationException("Negative cost cycle exists");
        return distTo[v];
    }

    /**
     * Is there a path from the source {@code s} to vertex {@code v}?
     * @param  v the destination vertex
     * @return {@code true} if there is a path from the source vertex
     *         {@code s} to vertex {@code v}, and {@code false} otherwise
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public boolean hasPathTo(int v) {
        validateVertex(v);
        return distTo[v] < Double.POSITIVE_INFINITY;
    }

    /**
     * Returns a shortest path from the source {@code s} to vertex {@code v}.
     * @param  v the destination vertex
     * @return a shortest path from the source {@code s} to vertex {@code v}
     *         as an iterable of edges, and {@code null} if no such path
     * @throws UnsupportedOperationException if there is a negative cost cycle reachable
     *         from the source vertex {@code s}
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public Iterable pathTo(int v) {
        validateVertex(v);
        if (hasNegativeCycle())
            throw new UnsupportedOperationException("Negative cost cycle exists");
        if (!hasPathTo(v)) return null;
        Stack path = new Stack();
        for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) {
            path.push(e);
        }
        return path;
    }

    // check optimality conditions: either
    // (i) there exists a negative cycle reacheable from s
    //     or
    // (ii)  for all edges e = v->w:            distTo[w] <= distTo[v] + e.weight()
    // (ii') for all edges e = v->w on the SPT: distTo[w] == distTo[v] + e.weight()
    private boolean check(EdgeWeightedDigraph G, int s) {

        // has a negative cycle
        if (hasNegativeCycle()) {
            double weight = 0.0;
            for (DirectedEdge e : negativeCycle()) {
                weight += e.weight();
            }
            if (weight >= 0.0) {
                System.err.println("error: weight of negative cycle = " + weight);
                return false;
            }
        }

        // no negative cycle reachable from source
        else {

            // check that distTo[v] and edgeTo[v] are consistent
            if (distTo[s] != 0.0 || edgeTo[s] != null) {
                System.err.println("distanceTo[s] and edgeTo[s] inconsistent");
                return false;
            }
            for (int v = 0; v < G.V(); v++) {
                if (v == s) continue;
                if (edgeTo[v] == null && distTo[v] != Double.POSITIVE_INFINITY) {
                    System.err.println("distTo[] and edgeTo[] inconsistent");
                    return false;
                }
            }

            // check that all edges e = v->w satisfy distTo[w] <= distTo[v] + e.weight()
            for (int v = 0; v < G.V(); v++) {
                for (DirectedEdge e : G.adj(v)) {
                    int w = e.to();
                    if (distTo[v] + e.weight() < distTo[w]) {
                        System.err.println("edge " + e + " not relaxed");
                        return false;
                    }
                }
            }

            // check that all edges e = v->w on SPT satisfy distTo[w] == distTo[v] + e.weight()
            for (int w = 0; w < G.V(); w++) {
                if (edgeTo[w] == null) continue;
                DirectedEdge e = edgeTo[w];
                int v = e.from();
                if (w != e.to()) return false;
                if (distTo[v] + e.weight() != distTo[w]) {
                    System.err.println("edge " + e + " on shortest path not tight");
                    return false;
                }
            }
        }

        StdOut.println("Satisfies optimality conditions");
        StdOut.println();
        return true;
    }

    // throw an IllegalArgumentException unless {@code 0 <= v < V}
    private void validateVertex(int v) {
        int V = distTo.length;
        if (v < 0 || v >= V)
            throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1));
    }

    /**
     * Unit tests the {@code BellmanFordSP} data type.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {
        In in = new In(args[0]);
        int s = Integer.parseInt(args[1]);
        EdgeWeightedDigraph G = new EdgeWeightedDigraph(in);

        BellmanFordSP sp = new BellmanFordSP(G, s);

        // print negative cycle
        if (sp.hasNegativeCycle()) {
            for (DirectedEdge e : sp.negativeCycle())
                StdOut.println(e);
        }

        // print shortest paths
        else {
            for (int v = 0; v < G.V(); v++) {
                if (sp.hasPathTo(v)) {
                    StdOut.printf("%d to %d (%5.2f)  ", s, v, sp.distTo(v));
                    for (DirectedEdge e : sp.pathTo(v)) {
                        StdOut.print(e + "   ");
                    }
                    StdOut.println();
                }
                else {
                    StdOut.printf("%d to %d           no path\n", s, v);
                }
            }
        }

    }

}

 

你可能感兴趣的:(算法)